TMG - Text to Matrix Generator 
    TMG parses a text collection and generates the term - 
    document matrix.
    A = TMG(FILENAME) returns the term - document matrix, 
    that corresponds to the text collection contained in 
    files of directory (or file) FILENAME. 
    Each document must be separeted by a blank line (or 
    another delimiter that is defined by OPTIONS argument) 
    in each file. 
    [A, DICTIONARY] = TMG(FILENAME) returns also the 
    dictionary for the collection, while [A, DICTIONARY, 
    GLOBAL_WEIGHTS, NORMALIZED_FACTORS] = TMG(FILENAME) 
    returns the vectors of global weights for the dictionary 
    and the normalization factor for each document in case 
    such a factor is used. If normalization is not used TMG 
    returns a vector of all ones. 
    [A, DICTIONARY, GLOBAL_WEIGHTS, NORMALIZATION_FACTORS, 
    WORDS_PER_DOC] = TMG(FILENAME) returns statistics for 
    each document, i.e. the number of terms for each document. 
    [A, DICTIONARY, GLOBAL_WEIGHTS, NORMALIZATION_FACTORS, 
    WORDS_PER_DOC, TITLES, FILES] = TMG(FILENAME) returns in 
    FILES the filenames contained in directory (or file) 
    FILENAME and a cell array (TITLES) that containes a 
    declaratory title for each document, as well as the 
    document's first line. Finally [A, DICTIONARY, 
    GLOBAL_WEIGHTS, NORMALIZATION_FACTORS, WORDS_PER_DOC, 
    TITLES, FILES, UPDATE_STRUCT] = TMG(FILENAME) returns a 
    structure that keeps the essential information for the 
    collection' s update (or downdate).
 
    TMG(FILENAME, OPTIONS) defines optional parameters: 
        - OPTIONS.use_mysql: Indicates if results are to be 
          stored in MySQL.
        - OPTIONS.db_name: The name of the directory where 
          the results are to be saved.
        - OPTIONS.delimiter: The delimiter between documents 
          within the same file. Possible values are 'emptyline' 
          (default), 'none_delimiter' (treats each file as a 
          single document) or any other string.
        - OPTIONS.line_delimiter: Defines if the delimiter 
          takes a whole line of text (default, 1) or not.
        - OPTIONS.stoplist: The filename for the stoplist, 
          i.e. a list of common words that we don't use for 
          the indexing (default no stoplist used).
        - OPTIONS.stemming: Indicates if the stemming algorithm 
          is used (1) or not (0 - default).
        - OPTIONS.update_step: The step used for the incremental 
          built of the inverted index (default 10,000).
        - OPTIONS.min_length: The minimum length for a term 
          (default 3).
        - OPTIONS.max_length: The maximum length for a term 
          (default 30).
        - OPTIONS.min_local_freq: The minimum local frequency for 
          a term (default 1).
        - OPTIONS.max_local_freq: The maximum local frequency for 
          a term (default inf).
        - OPTIONS.min_global_freq: The minimum global frequency 
          for a term (default 1).
        - OPTIONS.max_global_freq: The maximum global frequency 
          for a term (default inf).
        - OPTIONS.local_weight: The local term weighting function 
          (default 't'). Possible values (see [1, 2]): 
                't': Term Frequency
                'b': Binary
                'l': Logarithmic
                'a': Alternate Log
                'n': Augmented Normalized Term Frequency
        - OPTIONS.global_weight: The global term weighting function 
          (default 'x'). Possible values (see [1, 2]): 
                'x': None
                'e': Entropy
                'f': Inverse Document Frequency (IDF)
                'g': GfIdf
                'n': Normal
                'p': Probabilistic Inverse
        - OPTIONS.normalization: Indicates if we normalize the 
          document vectors (default 'x'). Possible values:
                'x': None
                'c': Cosine
        - OPTIONS.dsp: Displays results (default 1) or not (0) to 
          the command window.
        - OPTIONS.remove_num: Indicates if we remove the numbers from the
          dictionary (value 1) or not (value 0- default).
        - OPTIONS.remove_al: Indicates if we remove the alphanumerics from 
            the dictionary (value 1) or not (value 0- default).
        - OPTIONS.parse_subd: Indicates if we parse all the subdirectories
          without be questioned (value 1), or we are asked which 
          subdirectories to parse (value 0-default). This option is
          recommended for large collections with many subdirectories
          so that they can be run in batch mode. Setting this options we
          are avoiding questions during the parsing.
 
    REFERENCES: 
    [1] M.Berry and M.Browne, Understanding Search Engines, Mathematical 
    Modeling and Text Retrieval, Philadelphia, PA: Society for Industrial 
    and Applied Mathematics, 1999.
    [2] T.Kolda, Limited-Memory Matrix Methods with Applications,
    Tech.Report CS-TR-3806, 1997.
 
  Copyright 2011 Dimitrios Zeimpekis, Eugenia Maria Kontopoulou, 
                 Efstratios Gallopoulos
					
				

Return to main page