SKMEANS - Spherical k-Means Clustering Algorithm
SKMEANS clusters a term-document matrix using the Spherical
k-means clustering algorithm [1]. CLUSTERS=SKMEANS(A, C, K,
TERMINATION) returns a cluster structure with K clusters
for the term-document matrix A using as initial centroids
the columns of C (initialized randomly when it is empty).
TERMINATION defines the termination method used in spherical
k-means ('epsilon' stops iteration when objective function
increase falls down a user defined threshold - see OPTIONS
input argument - while 'n_iter' stops iteration when a user
defined number of iterations has been reached).
[CLUSTERS, Q]=SKMEANS(A, C, K, TERMINATION) returns also
the vector of objective function values for each iteration
and [CLUSTERS, Q, C]=SKMEANS(A, C, K, TERMINATION) returns
the final centroid vectors.
SKMEANS(A, C, K, TERMINATION, OPTIONS) defines optional
parameters:
- OPTIONS.iter: Number of iterations (default 10).
- OPTIONS.epsilon: Value for epsilon convergence
criterion (default 1).
- OPTIONS.dsp: Displays results (default 1) or not (0)
to the command window.
REFERENCES:
[1] I. S. Dhillon and D. M. Modha, "Concept Decompositions
for Large Sparse Text Data using Clustering", Machine
Learning, 42:1, pages 143-175, Jan, 2001.
Copyright 2011 Dimitrios Zeimpekis, Eugenia Maria Kontopoulou,
Efstratios Gallopoulos