PDDP_OPTCUT_2MEANS - Hybrid Principal Direction Divisive
Partitioning Clustering Algorithm and k-means
PDDP_OPTCUT_2MEANS clusters a term-document matrix (tdm)
using a combination of the Principal Direction Divisive
Partitioning clustering algorithm [1] and k-means [2].
CLUSTERS=PDDP_OPTCUT_OPTCUT_2MEANS(A, K) returns a cluster
structure with K clusters for the tdm A.
[CLUSTERS, TREE_STRUCT]=PDDP_OPTCUT_2MEANS(A, K) returns also
the full PDDP tree, while [CLUSTERS, TREE_STRUCT, S]=
PDDP_OPTCUT_2MEANS(A, K) returns the objective function of
PDDP.
PDDP_OPTCUT_2MEANS(A, K, SVD_METHOD) defines the method used
for the computation of the PCA (svds - default - or propack).
PDDP_OPTCUT_2MEANS(A, K, SVD_METHOD, DSP) defines if results
are to be displayed to the command window (default 1) or not
(0). Finally, PDDP_OPTCUT_2MEANS(A, K, SVD_METHOD, DSP, EPSILON)
defines the termination criterion value for the k-means
algorithm.
REFERENCES:
[1] D.Boley, Principal Direction Divisive Partitioning, Data
Mining and Knowledge Discovery 2 (1998), no. 4, 325-344.
[2] D.Zeimpekis, E.Gallopoulos, k-means Steering of Spectral
Divisive Clustering Algorithms, Proc. of Text Mining Workshop,
Minneapolis, 2007.
Copyright 2011 Dimitrios Zeimpekis, Eugenia Maria Kontopoulou,
Efstratios Gallopoulos