EKMEANS - Euclidean k-Means Clustering Algorithm
EKMEANS clusters a term-document matrix using the standard
k-means clustering algorithm. CLUSTERS=EKMEANS(A, C, K,
TERMINATION) returns a cluster structure with K clusters
for the term-document matrix A using as initial centroids
the columns of C (initialized randomly when it is empty).
TERMINATION defines the termination method used in k-means
('epsilon' stops iteration when objective function decrease
falls down a user defined threshold - see OPTIONS input
argument - while 'n_iter' stops iteration when a user
defined number of iterations has been reached).
[CLUSTERS, Q]=EKMEANS(A, C, K, TERMINATION) returns also
the vector of objective function values for each iteration
and [CLUSTERS, Q, C]=EKMEANS(A, C, K, TERMINATION) returns
the final centroid vectors.
EKMEANS(A, C, K, TERMINATION, OPTIONS) defines optional
parameters:
- OPTIONS.iter: Number of iterations (default 10).
- OPTIONS.epsilon: Value for epsilon convergence
criterion (default 1).
- OPTIONS.dsp: Displays results (default 1) or
not (0) to the command window.
Copyright 2011 Dimitrios Zeimpekis, Eugenia Maria Kontopoulou,
Efstratios Gallopoulos