NH
E PARALLEL
e COMPUTING

ELSEVIER Parallel Computing 27 (2001) 1879-1896

www.elsevier.com/locate/parco

Cobra: Parallel path following for computing
the matrix pseudospectrum ™

C. Bekas, E. Gallopoulos *

Department of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece

Received 5 November 1999; received in revised form 18 January 2000; accepted 15 March 2001

Abstract

The construction of an accurate approximation of the e-pseudospectrum of a matrix by
means of the standard grid method is a very demanding computational task. In this paper, we
describe Cobra, a domain-based method for the computation of pseudospectra that combines
predictor corrector path following with a one-dimensional grid. The algorithm offers large and
medium grain parallelism and becomes particularly attractive when we seek fine resolution of
the pseudospectrum boundary. We implement Cobra using standard LAPACK components
and show that it is more robust than the existing path following technique and faster than it
and the traditional grid method. Cobra is also combined with a partial SVD algorithm to
produce an effective parallel method for computing the matrix pseudospectrum. © 2001
Elsevier Science B.V. All rights reserved.

Keywords: Path following; Matrix pseudospectrum; Parallel computing; Singular value decomposition;
Partial SVD; Shared-memory multiprocessors; NUMA; SGI Origin

1. Introduction

The e-pseudospectrum of a matrix 4 € C™", defined as
A (4) ={z:z€ A(4 +E) for some E € C"™" with ||E| <€} (1)

and equivalently by

*Supported in part by European INCO-COPERNICUS Scientific Program, Project STABLE: CP
960237.
* Corresponding author.
E-mail addresses: knb@daidalos.hpclab.ceid.upatras.gr, stratis@daidalos.hpclab.ceid.upatras.gr
(E. Gallopoulos).

0167-8191/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(01)00121-1

1880 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

A(A) ={z: omin(zl — A4) <€}, (2)

where symbols A(-) and oy,,(-) denote the spectrum and the smallest singular value
of their matrix arguments, has become a tool for the investigation of the behavior of
several (non-normal) matrix-dependent algorithms, ranging from iterative methods
for large linear systems to time-stepping algorithms [9]. We note, for instance, the
inclusion of specific functions to that effect (ps and pscont) in the popular Test
Matrix Toolbox of MATLAB [7]; the former uses definition (1) and the latter def-
inition (2). Computing the pseudospectrum, however, is significantly more expensive
than computing traditional characteristics such as the condition number, the norm,
the eigenvalues and the singular values. This is illustrated in Figs. 1(left) and (right),
where we apply the functions ps and pscont on a small problem, in particular the
matrix kahan of order n = 50 from the previously mentioned toolbox. The figures
depict the pseudospectra and the associated costs (in millions of MATLAB flops)
for each plot. For comparison, the costs of the full SVD and full eigendecomposition
of A — zI for some z € C were 1.5 and 1.6 M(illion), respectively.

The standard reference method for pseudospectra is based on definition (2); we
call it GRID and note that it estimates /. at a region of the complex plane Q by first
discretizing the region with a grid Q,, then computing o,i,(z/ — 4) for all z;, € Q,
and finally plotting the e-contours. Therefore, its cost can be modeled by
Torip =~ |82,|C,, ., Where |©,| denotes the number of points of the grid and C,_ is the
average cost for extracting the o,;,. Methods that attempt to reduce costs have
typically fallen in one of the following two categories.

Domain-oriented. Methods that attempt to reduce |Q,| by exploiting properties of

the e-contours and the shape of the pseudospectrum domain.

min

Matrix-oriented. Methods that attempt to reduce C,

at each point.

min

0.6

04

L .r .
0.2 PR T
%)

o
3
¥iio wd
13 g
2ol e?

* .
. e e
‘e o -.-..u"‘ ned o
.’ : '-'r&'yg-.."‘?'

-0.2

flops(PS(A,20,1e-3))=189M
-04

-0.6 [

0.5F

0.4

0.3

0.2

01F

=)
T

0.1

-0.3

-04

-05

flops(PSCONT

-0.2 0 0.2 0.4 0.6 0.8

1

0

0.2 0.4 0.6 0.8 1

Fig. 1. Illustrations of pseudospectra for the kahan matrix of order n = 50 computed using MATLAB
Test Matrix Toolbox functions ps (left) and pscont (right) The left figure shows the eigenvalues of
matrix 4 + E, for random perturbations E; € C"% j = ,20, where ||E;||, < 1073 and the right figure
shows the level curves from a 40 x 40 grld defined by {z amm(zl A)< e} for e =107 down to 1071,

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1881

In this paper, we focus on the former category and point the reader to the recent
review [10] for a comprehensive survey. Our starting point is the domain-oriented
technique proposed by Briihl in [4]. This exploits the fact that the pseudospectrum
A.(A4) can be obtained by tracing the corresponding boundary curve(s) 04.(4). It is
thus enough to solve the following:

Problem PSe: Given 4 € C"*" and € > 0, compute 04.(4) = {z|omin(zf — 4) = €}

Briihl’s idea was to use predictor—corrector path following to trace the pseudo-
spectrum curve and thus offers the potential for large computational savings com-
pared to GRID. As Briihl and others have reported, however, (i) the method is not
always reliable, and (ii) it offers no opportunities for parallelism other than those
inherent in the SVD. The contribution of this paper is Cobra, a method that offers
increased reliability and large-grain parallelism. As we will see, the two advantages
of the method are tightly coupled: large-grain parallelism is a consequence of the
steps taken to improve reliability and vice-versa. Cobra is based on a hybrid of path
following and GRID. It uses a small, moving one-dimensional grid that follows 04,
almost like the neck of a cobra that follows the movements of its prey. We refer to
[2], an on-line version of this work for some of the omitted technical details.

Section 2 reviews predictor—corrector path following for pseudospectra and then
describes Cobra. Its implementation, performance for typical problems and various
improvements are presented in Section 3 while Section 4 provides concluding re-
marks. We use standard notation: matrix 4 € C"*" has singular value decomposition
A = UZXV*, where the unitary matrix U (resp. V) contains the left (resp. right) sin-
gular vectors, X is the diagonal matrix of singular values whose minimum value is
denoted by o, and the corresponding left and right singular vectors by u,;, and

Umin -

2. Path following and pseudospectra

Numerical path following is a powerful tool in many areas of numerical mathe-
matics. Predictor—corrector path following ' proceeds as follows: initially, a point
lying on the curve is computed; then the curve is traced by repeating: (i) a prediction
step, during which a point Z, along the general direction of traversal is computed,
and (ii) a correction step during which one or more iterations are applied to correct z;
to z; € 04.(4). The prediction is achieved using an Euler predictor, i.e., a step in the
direction of the tangent to the curve, and the correction by means of Newton iter-
ation. The originality of Brithl’s contribution was his use of path following to
compute 04.(4). Given ¢, the goal is to numerically approximate the boundary

! For the remainder of this paper we will assume that whenever we refer to path following, we refer to the
predictor—corrector variety.

1882 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

04.(A) of the e-pseudospectrum A.(4). For this, we need to have knowledge of the
differential properties of 04.(4). By definition, the curve is implicitly defined by
the equation g(z) = ¢, where g(x,) := omin((x +1¥)] — 4). As in [4], we identify the
complex plane C with R?> and identify with slight abuse of notation
g(z) = g(x +1y) = g(x,»). Key is the following result ([8, Section 4.2] and references
therein):

Theorem 1. Let z =x+1iy € C\ A(4). Then g(x,y) is real analytic in a neighborhood
of (x,¥), if omin((x + i) — A) is a simple singular value. The gradient of g(x,y) is equal
to

Vg(x,y) = (“R(U:(ninumin)’ S(v:(ninl’lmin)) = U:ninumin?

where uy, and vy, denote the left and right singular vectors corresponding to oyn.

We denote Briihl’s path-following algorithm by PF and listed in in Table 1.

The correction phase is implemented with Newton iteration along the direction of
steepest ascent d;, = Vg(Z;). Theorem 1 provides the formula for the computation of
the gradient of o,,(zf — A) — e. The various parameters needed to implement the
main steps of the procedure can be found in [4].

Unlike typical prediction—correction, the prediction direction 7; in PF is taken
orthogonal to the previous correction direction dj_;; this is in order to avoid an
additional (expensive) triplet evaluation. Each Newton iteration at a point z requires
the computation of the singular triplet (Gumin, “min, Umin) Of zI — 4. This is the domi-
nant cost per step and determines the total cost of the algorithm; see also Section
2.1.4. Computational experience in [4] indicates that a single Newton step is sufficient
to obtain an adequate correction. What makes PF so appealing is that by tracing
0/4.(A) it replaces a computation over a predefined two dimensional grid Q, with a
computation over points on the pseudospectrum boundary. PF, however, also suffers
from numerical and computational weaknesses. The former class of weaknesses were
already described in [4] and might cause failure or incomplete termination of the
algorithm; see Figs. 6(left) and 7(left). In the first case, there are locations where the
pseudospectrum boundary has steep turns; these cause the curve tracing algorithm to

Table 1
The original PF algorithm [4]

Algorithm. PF

(*Initialization.: *)
Transform A to upper Hessenberg form and set £ = 0.
Find initial point z, € 04.(4)

repeat

(* Prediction phase *)

Determine r, € C, ||rx|| = 1, steplength 1, and set Z; = z;_y + 7.

(* Correction phase *)

Correct along d; € C, ||d;|| = 1 by setting z; = Z;, + 0,d; where 0, is some steplength.
until termination.

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1883

lose its track or retrace its own steps. In the second case, there are segments of the
curve that are nearby; it may then happen that the algorithm will jump from one part
of the curve to the other, thus producing wrong results. One remedy would be to
keep the steplength t; sufficiently small to capture the detail of the curve; in the
absence of dynamic stepsize adjustment, however, this strategy can be very expensive
as its cost is determined by the minimum steplength required to avoid failure at the
most difficult parts of the curve. [4] only mentions as ways to address these problems,
the use of heuristics for dynamic steplength adaptation and the application of a
small, local version of the standard GRID method at those points problematic to
path following. Cobra is a derivative of the latter idea. The last difficulty is that if we
rely on a single run of path following, we will miss components of non-simply
connected pseudospectra. We do not discuss this any further but note that it can be
overcome either by searching for all the components (in sequence or in parallel) or by
combining path following with special strategies for locating the different compo-
nents. Regarding the computational weaknesses, we already saw that the solution of
problem PSe is expensive and motivates the use of parallel processing. GRID, of
course, offers abundant “embarassing” large-grain parallelism. We can assign, for
example, one or more gridpoints to each processor and let them compute the cor-
responding o.,;,; see experiments in [6,3]. Unfortunately, no computations are
avoided: each processor performs O(n*/p) computations, even though we are only
interested at those points z where oy(zI — A) = €. Algorithm PF reduces the
number of necessary o, computations from quadratic to linear in the number of
points on 0A4.(4). A careful observation of the algorithm, however, reveals that the
only opportunity for parallelism is in the computation of the singular triplets. Unless
the matrix size is very large, however, this task is expected to offer only moderate
speedups [5]. We also mention that an obvious method for extracting parallelism
from PF is to apply it to obtain 04.(4) for several values of e. This can be done by
running one instance of the method per value of e. We note that a weakness of this is
that the amount of parallelism it entails depends on the number of values of e that
are of interest. Since this approach can also be used to introduce further parallelism
in the method we are about to describe, we do not discuss it further. From now on,
we concentrate on solving (a single instance of) PSe.

2.1. The Cobra algorithm

In this section, we present an efficient parallel algorithm that expands the basic
ideas of predictor—corrector path following into a robust scheme for the construction
of 04.(4). Assuming that a point z{*, € 04.(4) that we name pivot of the current
step is already available, Cobra proceeds in three phases. The first mimics PF and
uses prediction—correction to determine a support point, say z;© on A.(4). The
second phase consists of two steps. The first uses the current pivot and support
points in order to compute initial approximations (;, j=1,...,m for 04.(4).
The second step performs corrections in this initial group in order to obtain ac-
ceptable approximations z; € 04.(4), i = 1,...,m. The third phase uses a selection

procedure to mark one of the z; € d4.(4), i =1,...,m as the next pivot. Fig. 2

1884 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

0>

sup

§ 24PV

2K

Fig. 2. Position of pivot zZi_vl, initial prediction Z, support z;*, first-order predictors ;, and corrected

points z;. The figure is not in the proper scale since in general & < H.

illustrates the procedure. We next describe some of the design issues; for more details
see [2].

2.1.1. Calculation of initial point and support points

This segment of the algorithm is identical with that used by the original PF al-
gorithm. We seek a straight line crossing 04,(4) as well as its point of intersection
with the curve. The procedure is formally stated as follows. We seek a solution of the
equation f(0) =g(A+0d) —e=0 on the line A+ 0d, where A, d € C, |d| =1,
0 € R, and A, d are fixed. If we assume that 0y = 0 and that g is differentiable at A
and Vg(A) = v%, tmin # 0, then the first iterate 0, is defined by 0, =0, —
(f(60)/f(60)) = —(g(4) —€/f'(0)). Theorem 1 shows that g(1)=om, and
f(0)= ‘R(Evfmnumin), where uy;, and vy, are the minimum singular vectors of
/L —A. Therefore, the next point is determined by 0p11 = 0y — (6min — €/
ER(Ev;mumin)) and z;,; = 42+ 0;,1d. The fact that the pseudospectrum is symmetric
with respect to the real axis when the matrix is real was exploited in the literature in
order to halve the cost of its computation. The following lemma shows that in the
real case, there is is additional information that the procedure for finding the first
point can exploit.

Lemma 2. Let A € R™". Then the following hold.

1. There exists € > 0 such that for all € = €, the real axis will intersect at least one
component of 0A.(4).

2. If nis odd, then for any € > 0 the real axis will intersect at least one component of
0A.(A).

3. If the matrix has only non-negative elements, then for any € > 0 the real axis will
intersect at least one component of 0A.(A). This component corresponds to the
eigenvalue of A whose magnitude equals the spectral radius of A.

Proof. We first note that pseudospectra are nested around the eigenvalues, that is,
A(A) = Ap(4) C A, (4) C A,(A4) for € < €. Item (1) follows from the fact that we
can always find E € C"™" such that 4 + E has at least one real eigenvalue, so we can

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1885

use € = ||E||. Item (2) holds since when 7 is odd, the characteristic polynomial of 4
will have at least one real root. Item (3) follows from standard theory of non-neg-
ative matrices. [

For all these cases, the first point in the path following procedure can be com-
puted without using complex arithmetic by forcing the search for the first point on
the real axis. A side benefit of a real starting point is that the algorithm will first
traverse all the points of the segment of 04.(4) that lie in one half plane, after which
it can stop because of the symmetry of 04.(4). Cobra, like PF, computes each time
only that component of the pseudospectrum containing the initial point. To compute
the support point z;'*, we employ the same prediction—correction scheme as in PF.
The correction step is performed using a single step of Newton iteration while the
predictor uses a small stepsize /.

2.1.2. Determination of starting values (;, and computation of z, € 04,(4),
j=1,....m .

At the neighborhood of the current pivot z;""|, the curve 04.(4) is approximated
by a first-order predictor, that is a straight line segment d; such that z"", € d;. The
direction of d; is determined by z", and the current support point z,*. The line
segment extends from z{"", along d; and for a predefined “cobra neck” length H. The
line segment is discretized using m equidistant points {;,, j=1,...,m so that
{0 =z + jh, where h = H /m is the internal steplength for this phase. A correction
procedure based on Newton iterations leads from the initial to the (approximate)
points of the pseudospectrum curve, i.e., {;; — z,{. These iterations are independent
from each other and can be computed in parallel. Based on the constraints for the
correction paths, we implemented two types of corrections. The first one we call
constrained and denote by VH.C (vertical-horizontal correction); in this, the cor-
rection directions are parallel to the real or imaginary axes; Let z; = (x;, ;) € Cbea
generic point and z"" a support point, then we choose the search lines of the cor-
rection step to be horizontal or vertical depending on the value of |x; — %;|. We have
that

Omin — €

Osr1 = 0, — Sign(—lﬁ)m

and éj,erl = Cj,s + eil//95+la

where Yy = 0 (resp. y = nt/2) when we choose the horizontal (resp. vertical) direction
and the sign function satisfies sign(0) = 1;0p = 0 and (6 min, Umin, Umin) 18 the triplet
corresponding to the point {;,. The second correction scheme we call unconstrained
and denote by SD.C (steepest—direction correction); in this, corrections lie along the
path of steepest descent for the error. Note that this is the same strategy used in the
first phase of Cobra as well as in PF, except that here several corrections can be
performed concurrently. Further details of both methods can be found in [2]. The
above algorithm can be modified without much difficulty and few extra computa-
tions to use second-order information to predict the starting points {;,. In general,
these points cannot be far from z}"*,. The (cobra neck) length H = mh depends on the
curve, which is not known a priori; in our implementation H was a moderate

1886 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

multiple of the steplength / used in the first phase. When all independent iterations
terminate according to some stopping criterion, the process returns m new point
approximations to 04.. We then set z{{ sy J=1,...,m, where s; denotes the
number of correction steps performed for point {;o. As was done in PF, we also
enforced s; = 1.

2.1.3. Selection of next pivot A ‘

This is formally implemented as z}" = &(z{",,z,",z},...,2"). In our implemen-
tation, @ selects the point z}'. In general, we can consider a strategy for selecting the
next pivot point according to the distance from z;_; and the relative error of each
point. The criterion is general enough to allow the return of points as far back as
z,, if the iterations within the cobra neck are not successful, or even z}"", if both
prediction—correction phases fail (in which case the procedure stalls until we modify
the stepsizes). The steps of Cobra are summarized in Table 2. Using the notation
established above, we tabulate the points that are computed during step k of Cobra,

assuming pivot z}", is available.

Notation Point on 04.(4)? Type of point Cobra phase

Z - Predicted Ist phase

Z? Yes Corrected support 1st phase

Cos- 5 Cmo - Predicted Ist step, 2nd phase
z,’;f— G, Yes Corrected 2nd step, 2nd phase
Y ' Yes Pivot selected by @ 3d phase

We already saw that the second phase of Cobra offers large-grain parallelism.
The three-phase approach has additional advantages. The first phase is used to
obtain the chordal direction linking the pivot and support points. For this, we can
use a stepsize / that is small enough to capture the necessary detail of the curve and

Table 2
The Cobra algorithm

Algorithm [Cobra]
(* 0. Initialization *)
0.1. Transform A to upper Hessenberg form and set £ = 0.
0.2. Find initial point 20"
repeat
(* 1. First prediction-correction phase *)
1.1. Set k = k + 1 and predict z;.
1.2. Correct using Newton and compute z;"*.
(* 2. Second prediction-correction phase *)
2.1. Predict {; ¢, ..., Co-
2.2. Correct using Newton and compute z}, ...,z
(* 3. Third phase: Pivot selection *)
Determine next pivot 2/ using ®.
until termination.

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1887

also be close to the tangential direction. Nevertheless, the chordal direction is often
better for our purpose: for instance, if for points in the neighborhood of the current
pivot 04.(4) is downwards convex and lies below the tangent, then the predicted
points {{ j,0}7:1 lie closer to 04.(4) than if we had chosen them along the tangent. We
also note that Cobra offers a hybrid of PF with GRID. Unlike PF, however, the
runtime of the algorithm is not adversely affected if / is small. Instead, it is the cobra
neck size H that acts as the effective stepsize. Finally, the selection procedure gives us
the opportunity to reject one or more points. In the rare cases that the parallel
corrections all fail, this could even return the support or pivot points; cf. Section
2.1.3. This would be equivalent to performing one step of PF with (small) stepsize h.
As illustrated in Section 3, these characteristics make Cobra significantly more
robust than PF.

2.1.4. Complexity

Let Cuipiee and Csyp denote, respectively the average costs of computing the
minimum singular triplet and full SVD of a complex upper Hessenberg matrix of
order n over all gridpoints of the domain. We approximate the cost of each
Newton iteration by the cost of a triplet computation Ctrlplet Let the number of
Newton iterations conducted during the prediction phase be sO) and let the number
of correction iterations conducted at step k be denoted by the m-tuple
(s§k> s<">). Then the cost during step k (excluding the initialization)

(So + Z/ | j)Cmplct The total cost of Cobra, excluding initializations, is
Ceovra = Criplet Zk(s0 + Z/ 18)), where the outer sum is taken over the pivot
points. We separate the term s, to emphasize that the corrections are performed
only after the prediction phase has terminated; this affects the parallel implemen-
tation. Enforcing a single Newton iteration, the total sequential cost per step be-
comes (1 4 m)Cyipier. Consider a computational system that employs p<m tasks
running concurrently on p processors to compute the singular triplets necessary
during the correction phase. Equidistributing gridpoints to processors, the total
cost of one step of Cobra is approximately (1 + (%W)Cmpm. A more detailed ap-
proximation has to take into account the fact that Cobra presents opportunities
for parallelism at several levels. We are interested primarily in the large-grain
parallelism, available when correcting {;y — 2] for each k =1,...,m; and the me-
dium-grain parallelism available in each singular triplet evaluation. To model at this
level we have to modify Cyipe: to reflect the cost of computing the triplet on a
parallel system. We consider a model system organized in loosely coupled clusters,
each cluster containing a number of tightly coupled processors; we use (L,p) to
denote the system configuration, where L is the number of clusters and p the
number of processors per cluster. We assume that the cost of exchanging infor-
mation between processors within each cluster (e.g., a shared memory multipro-
cessor) is very small and can be ignored. Restricting the algorithm to perform one
Newton iteration, the cost per Cobra step is modeled by

m

CCobra—step = Ctripletﬁpr + ’V_

L —‘ Ctriplet,p7

1888 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

where Cyipier, denotes the cost of the triplet computation on a single cluster of p
processors. We note that the complexity of the triplet computations depends on
whether we use a general algorithm that computes all triplets anyway (and not only
the minimum one) or whether we apply a special algorithm that targets only the
minimum triplet. For reasons of accuracy, our primary concern in this paper is the
former, which carries a complexity of O(n®). This is by far the largest cost in all
phases of the algorithm. We now assume that Ciipietpxz = Curiplet px. + Firiplet,z- The
term ryipierz is due to the communication overhead involved in running the triplet
computation on L clusters while the term cyipier pxz 18 due to the computational and
other costs of running the code on p x L processors. If we do not exploit the in-
tercluster parallelism, the term Ciipiet pxz, 1S Teplaced by Cipler - We next consider the
influence of communication in each phase of Cobra under the assumption that each
cluster is responsible for the triplet and SVD computations corresponding to the
points z assigned to its processors. For the purposes of this discussion, we designate
one of the clusters as root or master. What remains is to specify how to implement
phase 1: to avoid communication, we force it to execute on the root cluster. The
remaining clusters can be used for other tasks. In that case, the data that need to be
exchanged between clusters are at the end of step 1.2, the “broadcast” of z;"* to all
clusters, at the end of step 2.2 the “gather” of z}, j = 1, ..., m by the root cluster, and
at the end of phase 3 the broadcast of the new pivot to all clusters. It is clear that
resulting amount of communication across clusters is small. Even less communica-
tion is required if we decide to have all clusters replicate the first phase of the
computation. This work is redundant so we do it only if the other clusters have
nothing else to do. The effect is that the broadcast of the support point at the end of
step 1.2 becomes unnecessary. In summary, the communication required is at most
the broadcast and gather of O(m) data elements across the clusters. Remembering
the fact that the computational costs for the Newton and triplet or SVD calculations
can range from O(n) to O(n?) and that n > m, it follows that communication is
really insignificant and can be ignored in our discussion, unless we decide to perform
the first phase across clusters, in which case we need to add the ryipiei. to the cost.
We next compare the above cost with that of the original path following method.
Enforcing a single Newton iteration per step, the approximate cost per step of PF is
Cor.siep = Curiplet px- Therefore, the total cost of PF relative to that of Cobra is

Crr _ ZPF-steps Clriplet pxL
C‘Cobra ZCobra-steps(Cll'iplelvp X L + (m/L~| Ctripletip) ’

which simplifies to (Cer/Coovra) = (NCuipier.r)/ (N /m)(Cuiptet.r. + Curipler.1)) if (as is the
case in the experiments that follow) m = L, p = 1 and we use the same number of
points, say N (a multiple of m) to build the curve both in Cobra and PF. As long as
we are not in a region of superlinear speedup, we can safely assume that the cost of a
triplet computation on L processors is at best L times faster than the triplet com-
putation on a single processor, and at worst equal to it. Therefore (Ciipier,1)/
L < Cliplet.r < Cipler,1 and it follows from above that the speedup of Cobra over PF is
bounded by m/(m + 1) < (Cpz/Coobra) < (m/2).

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1889

The above analysis shows that m, the number of gridpoints on the cobra neck,
determines the amount of large-grain parallelism available in Cobra entirely due to
path following and that the maximum speedup for Cobra over PF on p x L =m
processors is m/2. Clearly, as the number of points on the cobra neck m increases,
the better use we expect to make of an increased number of processors. This implies
that the algorithm is extremely well suited for obtaining 04.(4) at very fine reso-
lutions. It is fair to mention, however, that since the neck length H cannot be ar-
bitrarily large, there is an upper bound to the number of points that are needed to
adequately represent 04.(4). This appears to limit the amount of large-grain par-
allelism that can be obtained in the second phase of Cobra; the problem is naturally
resolved as the size of the matrix increases by the work created during the triplet
calculations. In summary, any growth of m or n rapidly increases the availability of
large and medium grain parallelism.

3. Numerical experiments

We next conduct experiments to test and validate our previous discussion. GRID is
bound to be more expensive than the path following methods, and hence it is not
considered any further. The machine used in our studies was a non-uniform memory
access (NUMA) parallel architecture, namely, the popular SGI Origin 2000. The
configuration installed at the University of Patras had 8§ MIPS R10000 processors
and a total of 768 MB of RAM with 1 MB cache memory per processor running the
IRIX 6.4 OS. The codes were written in MIPS POWER Fortran 90. We used the
LAPACK implementation offered by the manufacturer’s sgicomplib as well as its
parallel version included in system library sgicomplib_mp. Our implementation
exploits both levels of parallelism described above. The parallel implementation of
the prediction phase is straightforward, since we can use the parallel version of the
LAPACK routines that compute the SVD. The correction phase was performed by
allocating p processors for each of the m triplets, thus computing m/L concurrently.
As the running version of the O/S did not permit nested parallel calls, we did not use
cluster-type organization and assumed p =1 and L = 8 throughout. Our imple-
mentation used library calls to evaluate SVDs in the prediction phase and concurrent
calls to single processor SVDs for the multiple correction phase. The directives and
assertions ! $DOACROSS and ! *$* ASSERT CONCURRENTCALL were used to enable
better parallelization. The flags used to compile the code were -03, -mips4, -mp.
These determined the optimization level, use of R10000 code and enabled parallel-
ism. To measure wall clock runtime, the code segments under consideration were
instrumented by enclosing them between calls to the Fortran 90 subroutine sys-
tem_clock. For the purposes of this study, we used dense matrix methods. Since
we did not want to consider here the effects of any inaccuracies in the computation of
the singular triplets (resulting say from the use of inverse iteration), in the experi-
ments of this section, we restricted ourselves to the most robust LAPACK routines
coordinated by module zgesvd [1].

1890 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

We tested our methods on non-normal matrices from [7]: (i) the upper triangular
matrix kahan with elements ay =s*' and @; = —s""'c when j >k, where
s"1=0.1 and s>+ c*=1 [9]; (ii) the pentadiagonal Toeplitz matrix grcar
A=Toeplitz([-1,1,1,1,1]), where the underlined element is in the main diago-
nal; (iii) matrix smoke (complex) that has unit elements in the superdiagonal and in
position (n, 1), powers of roots of unity along the diagonal and zero everywhere else.
The next two matrices are special cases of matrix pentoep(n,a, b, c,d,e), defined as
the pentadiagonal matrix 4 = Toeplitz([a,b,c,d,e]) and take their names from
the shape of their pseudospectrum when »n=32; (iv) fish defined by
pentoep(n,0,1/2,1,1,1); (v) propeller defined by pentoep(n,0,1/2,0,0,1).
The matrices in categorles (i-v) are already in Hessenberg form, therefore Hessen-
berg reduction was unnecessary.

3.1. Performance of Cobra. timings, accuracy, robustness

We first show that Cobra works correctly and compare its performance with PF.
Parallelism in PF is exploited at the level of the SVD computation; to this end we
used the appropriate module from library sgicomplib_mp. Our first experiment is
with kahan and € = 10~!. All eight processors of the system were utilized to solve
the problem. Our timings were based on version VH.C of Cobra. Since we enforce a
single Newton step in both the prediction and correction phases of Cobra, we expect
similar runtimes for SD.C and VH.C. Both PF and Cobra successfully compute
04.(A4). The timings applied to matrices of order n = 100,200,300, and 400 using
m = 8 gridpoints for the cobra neck are depicted in Fig. 3(left). Both Cobra and PF
computed the same number of points on 94.(4). The distance between gridpoints
was set to around 1072, The exact number of points for each of the above problem

I
| y \“H‘ww‘\“\\\“‘\‘\“‘
Jm

T
\H\\“‘H
‘\

o

time (sec)

= . 1 1 1 1 1 I I .
100 150 200 250 300 350 400 -08 -06 -04 -0.2 0 02 04 0.6 08 1 12
dimension n

Fig. 3. (Left) Runtime for Cobra (VH.C) and PF when applied on kahan; (right) relative errors for
Cobra VH.C and PF applied on kahan of order n = 50 with e = 1072, The x-axis is the x-coordinate of
0A4.(4). The dotted top curve is the PF error; 2 = 0.025, 7 = 0.008, H = 0.064.

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1891

Table 3
Performance of PF and Cobra using € = 1072
Matrix Order n Total points N PF time (s) Cobra time (s) Speedup
fish 100 1620 450 125 3.6
200 1620 4473 1235 3.6
propeller 100 1215 405 113 3.6
200 1620 4502 1305 35

sizes were N = 320,432,560 and 640. The figure shows that Cobra achieves sig-
nificantly better parallel performance than PF. Table 3 presents timings for plotting
04.(A4) for other test matrices when ¢ = 102. The number of points was chosen so
that both algorithms return an accurate plot. The resulting speedups of Cobra over
PTF are close to 4, which is the upper bound predicted by our model (analysis at the
end of Section 2.1.4) in the case of a system with eight processors, modeled by
(L,p) = (8,1) with m = L. We note that N is quite large, which means that we obtain
0/4.(A) at fine resolution.

It was already noted in [4] that PF is more accurate than GRID. We next compare
the accuracy of Cobra and PF for kahan with n =150 and €= 10" whose
pseudospectrum level curves were plotted in Fig. 1. We first applied PF and the
VH.C and SD.C versions of Cobra. Fig. 3(right) shows the relative error
|omin (2 — A) — €| /€ at points z € 04.(4) computed with VH.C for Cobra and PF.
We exploit symmetry and consider the error only at points lying below the real axis.

We observe that at all parts of the boundary curve the relative error of Cobra is
at worst comparable to that of PF and that in general, Cobra returns more accurate
results. Similar results, depicted in [2], demonstrate that SD.C Cobra obtains almost
the same accuracy as VH.C. The sawtoothed shape of the error for Cobra is due to
the fact that at each iteration of Cobra, the smallest error is achieved at the point
lying closest to the pivot and support points (this is typically z;), while the error is
larger as that distance increases. We next investigate the errors for grcar of order
n = 50. Fig. 4 shows the computed pseudospectrum curve corresponding to € = 1072
(left) and the relative error achieved by Cobra SD.C. The largest relative error is
observed in the neighborhood of sharp turns (parts 1 and 2). We observe that these
local peaks die off quickly; overall, Cobra still returns a satisfactory approximation
of the pseudospectrum. Fig. 5 depicts Cobra’s behavior near the ‘difficult’ parts 1
and 2.

We next compare with PF for grcar with n = 64 and € = 1072, Fig. 6(left) shows
that PF with stepsize © = 0.025 fails while the right figure depicts the results from
Cobra with neck size H and stepsizes 2 = 0.015, h = 0.015. It is clear that Cobra. is
able to capture the pseudospectrum whereas PF fails near the steep turns. This ex-
periment also shows the advantage of the three-phase strategy. In particular, we note
that PF is successful for 7 = 0.015; however, these steps are executed sequentially,
whereas when we use this small stepsize in Cobra we sweep a length of H = 0.12 per
step. Since each Cobra step costs two PF steps, Cobra achieves the predicted
speedup of m/2 = 4. The previous examples also show that neither version of Cobra

1892 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

3 25,
T 24
2 \
— PART 1 \ 154
! R N

Fig. 4. (Left) 84.(4) for grcar with n = 50 and € = 1072 computed using Cobra SD.C; (right) relative
error of 04,(4) computed using Cobra SD.C for grcar with n = 50 and e = 1072.

o
N

!
IS

| /“‘ - 4\“‘1\“‘“\’ “‘
b I
| /E //E\ (//‘(7

’J/“\ 1 “‘

'
o

ES

rel. accuracy

—~
el. accuracy
. .
L .
=]
—_

Fig. 5. Logarithm of relative error for parts 1-2 of d4.(4) of grcar with n = 50 and ¢ = 1072 as com-
puted by Cobra SD.C.

achieves uniformly better relative error, even though in most cases VH.C appears to
be better. We next use smoke with n = 64 and e = 1073, Here the difficulty stems
from the fact that in the neighborhood of z = 1 there are nearby segments of 04,.
These signify clustering of more than one singular values near the minimum o,,. It
was noted in [4] that PTF is likely to jump from one component to the other at those
locations, unless a very small stepsize is used; see Fig. 7(left). We experimented with
different stepsizes and were able to achieve a satisfactory approximation of the
pseudospectrum using PF and over N = 600 steps and SVDs. Our results using

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1893

* *
*oxoxow ox K

‘

3 L L L L - L L L L L L
=05 0 05 1 15 2 25 3 -1 =05 0 05 1 15 2 25 3

Fig. 6. Approximation of d4.(4) for grcar with n =64 and e = 102 using (left) PF and t = 0.025;
(tight) Cobra SD.C; H = 0.12,h = 0.015, 4 = 0.015.

L/ / \

J /
//“ “‘
0 ‘ < ok ‘ }
\ \ \ \
\ \ |
\ | \ |
\ J] /
\ / /
\ ’/'
- \\ / “f \\ /
- -
1 =05 0 05 1 1

15 -15
-15 = .5 =15 -1 =05 0 05 1 15

Fig. 7. Approximation of d4(4) for smoke with n =64 and e = 1073; (left) using PF and 7 = 0.025;
(right) using Cobra (VH.C); & = 0.015, # = 0.0075 and H = 0.06.

Cobra with neck size H = 0.06 and stepsizes h= 0.015, 2 =0.0075 are depicted in
Fig. 7(right). There were 232 Cobra steps, each step performing 1+ 8 triplet com-
putations for a total of 9 x 232 = 2088 triplets. Since each step of Cobra costs about
the same as two steps of PF, in the same amount of time PF would have performed
only 464 steps. In fact, PF would have required approximately 8 x 232 = 1856 steps
and triplet evaluations in order to create 04 .(4) using the same number of points as
Cobra. We also note that Cobra used & < A, that is the internal stepsize of the grid
was smaller than the stepsize for the first phase predictor. However, Cobra is much
faster than PF since it worked with neck length H = 0.06. In comparison, PF using
an even smaller steplength (t = 0.025) was not successful. We conclude that Cobra
returns a good approximation to 04.(4) at a much smaller parallel cost than PF.

1894 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896
3.2. Performance improvements

The analysis of Section 2.1.4 highlighted two potential areas of performance
improvement: (1) for problems of medium size with general matrices, when we use
the standard non-iterative algorithm implemented by LAPACK or MATLAB, we
pay for unnecessary computations. This is because these implementations follow an
“all or nothing” approach: either no or all singular vectors are computed; (2) the cost
analysis showed that when the neck contains m gridpoints and we use m processors,
the maximum potential speedup for Cobra over PF is m/2. This is 50% of the
“perfect” speedup and is due to the predictor step.

Regarding item (2), we have found that in several cases an explicit predictor step is
not necessary; instead, one can select the pivot and support points from those points
on 0A4.(A4) that were computed previously. When this works, Cobra can reach
perfect speedup relative to PF. We do not discuss this further but concentrate on
item (1). Our experiments till now computed singular triplets with LAPACK’s
zgesvd. To lower the cost we have followed an approach proposed by Van Huffel
(see [11]) for computing selected triplets. Its key ingredients are: (i) the delayed
computation of singular vectors and (ii) partial bidiagonalization. We thus modified
Van Huffel’s Partial SVD (PSVD) code (available from Netlib) in order to make it
suitable for our environment: the necessary modules were rewritten for double
precision complex arithmetic and segments of the code were replaced with calls to
BLAS and LAPACK routines from SGI’s complib. We designed two versions of
PSVD: the first utilized only the delayed computation “trick” while the second also
used partial bidiagonalization. Our implementations exploit an additional feature of
the problem. Since we are only interested in the minimum singular triplet, we can
avoid all computations related to uy,;,; instead, we first compute vy,;, and then use

6000

Cobra 1
5000~

4000

3000 ’

time (sec)

2000f ’

10001 - o

!
100 150 200 250 300 350 400
dimension n

Fig. 8. Runtime for Cobra: with full SVD (A), with delayed reflector accumulation (o), with delayed
reflector accumulation and partial bidiagonalization (+). The matrix is kahan and € = 1071

C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896 1895

Table 4
Performance of Cobra, ¢ = 10722
Matrix Order Total points Cobra+ Cobra+ Cobra+ Speedup
N full SVD PSVD(1) PSVD(1,2)
fish 100 1620 125s 123 s 27 s 4.6
200 1620 1235 962 198 6.2
propeller 100 1215 113 98 21 5.4
200 1620 1305 997 184 7.1

#Col. 4 uses full SVD, col. 5 uses PSVD with delayed reflector accumulation, col. 6 uses partial bidiag-
onalization. Col. 7 shows speedups of col. 6 over col. 4.

relation (H — zI)Uyin = Omintmin. This trick further reduces the cost since it replaces
the accumulation of elementary transformations of u,,;, with a single matrix vector
multiplication. We ran the resulting codes using the same data we used in Section 3.1
above and compared with the results we obtained earlier. Fig. 8 consists of the same
data used for Fig. 3 supplemented with the two versions of the algorithm described
above. Similarly, Table 4 compares the Cobra timings presented in Table 3 together
with the runtime from the two versions of PSVD. The results clearly demonstrate the
significant timing improvements obtained when Cobra (or PF) is implemented using
a cost effective algorithm for computing the minimum triplets. We also mention that
the numerical results of the first version of the Cobra PSVD approach and standard
Cobra were practically identical, whereas the results differed somewhat when both
PSVD tricks were applied.

4. Concluding remarks: towards the effective computation of pseudospectra

We have shown that Cobra can be very effective for solving the pseudospectrum
problem PSe, particularly when we demand a fine resolution for the construction of
the boundary. Interesting research issues arise. Some concern Cobra strategies (e.g.,
second-order information to predict new points, analytical estimates of accuracy,
etc.) for which we point to forthcoming reports at the same URL for the extended
version of this paper. Another area, pursued by Bertrand and Philippe, is to use
residue calculus to count eigenvalues. Cobra could also profit from adaptive stepsize
selection, but the need is much less acute than in PF. Another area is to extend
Cobra to bring geometry-based parallelism into other path following applications.
Even though Cobra is much less susceptible to failure than PF, problems could still
occur at points of non-differentiability of A.(4) and it is worth exploring techniques
to handle this. We saw that PSVD speeds up Cobra significantly; it would be in-
teresting to examine alternative methods for selected triple computation as well.
Cobra of course does not solve all possible problems in pseudospectra computa-
tions. The cost could still become prohibitive for large matrices; iterative methods for
computing the minimum triplets would then become necessary. Cobra can also be
combined with resolvent norm estimates. These possibilities suggest that the most

1896 C. Bekas, E. Gallopoulos | Parallel Computing 27 (2001) 1879-1896

effective approach would be a polyalgorithm that would extract useful information
about the input matrix and the available computational resources and would then
construct an optimal method from components such as Cobra.

Acknowledgements

A preliminary presentation of Cobra was given at the 1998 Copper Mountain
Conference. We are grateful to our colleagues in the project STABLE (Stability of
Physical Systems Using Parallel Computers) especially its coordinator, Bernard
Philippe, for many fruitful discussions. We acknowledge the helpful comments of
Martin Briihl regarding his method as well as discussions and comments of Kyle
Gallivan, Yannis Koutis, George Moustakides, Valeria Simoncini, Ahmed Sameh,
Masha Sosonkina and Layne Watson. The second author wishes to thank Jesse
Barlow who was his host at the Department of Computer Science and Engineering at
the PennState University where this paper was completed. We finally thank the
referees who helped us improve the paper.

References

[1]1 E. Anderson et al., LAPACK Users” Guide, second ed., STAM, Philadelphia, 1995.

[2] C. Bekas, E. Gallopoulos, Cobra: Parallel path following for computing the matrix pseudospectrum,
At www. hpclab. ceid. upatras. gr in faculty/stratis/Papers.

[3] T. Braconnier, Fvpspack: A Fortran and PVM package to compute the field of values and
pseudospectra of large matrices. Numerical Analysis Report No. 293, Manchester Centre for
Computational Mathematics, Manchester, England, August 1996.

[4] M. Briihl, A curve tracing algorithm for computing the pseudospectrum, BIT 33 (3) (1996) 441-445.

[5] J. Demmel, K. Stanley, The performance of finding eigenvalues and eigenvectors of dense symmetric
matrices on distributed memory computers, in: D.H. Bailey, et al. (Eds.), Proc. 7th Siam Conf. Paral.
Proc. Sci. Comput, SIAM, Philadelphia, 1995, pp. 528-533.

[6] V.Frayssé, L. Giraud, V. Toumazou, Parallel computation of spectral portraits on the Meiko CS2, in:
H. Liddell, et al. (Eds.), Lecture Notes in Coumpter Science: High-Performance Computing and
Networking, vol. 1067, Springer, New York, 1996, pp. 312-318.

[7]1 N.J. Higham, The Test Matrix Toolbox for MATLAB (version 3.0). Technical Report 276,
Manchester Centre for Computational Mathematics, September 1995.

[8] G.W. Stewart, J.G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.

[9]1 L.N. Trefethen, Pseudospectra of matrices, in: D.F. Griffiths, G.A. Watson (Eds.), Numerical
Analysis 1991, Proc. 14th Dundee Conf., Longman Science and Technology, Essex, UK, 1991,
pp. 234-266.

[10] L.N. Trefethen, Computation of pseudospectra, in: Acta Numerica 1999, vol. 8, Cambridge
University Press, Cambridge, 1999, pp. 247-295.

[11] S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and
Analysis, SIAM, Philadelphia, 1991.

