
Towards the Effective Parallel Computation of Matrix
Pseudospectra �

C. Bekas, E. Kokiopoulou
Computer Engineering and

Informatics Department
University of Patras Greece

knb@hpclab.ceid.upatras.gr
kokiopou@ceid.upatras.gr

I. Koutis
Computer Science

Department
Carnegie Mellon University

jkoutis@cs.cmu.edu

E. Gallopoulos
Computer Engineering and

Informatics Department
University of Patras Greece

stratis@hpclab.ceid.upatras.gr

ABSTRACT
Given a matrix A, the computation of its pseudospectrum
��(A) is a far more expensive task than the computation of
characteristics such as the condition number and the matrix
spectrum. As research of the last 15 years has shown, how-
ever, the matrix pseudospectrum provides v aluable informa-
tion that is not included in other indicators. So, we ask ho w
to compute it eÆciently and build a tool that would facili-
tate engineers and scientists to make such analyses? In this
paper we focus on parallel algorithms for computing pseu-
dospectra. The most widely used algorithm for computing
pseudospectra is em barassinglyparallel; nevertheless, it is
extremely costly and one cannot hopeto achieve absolute
high performance with it. We describe algorithms that have
drastically improved performance while maintaining a high
degree of large grain parallelism. We evaluate the e�ective-
ness of these methods in the context of a MATLAB-based
environment for parallel programming using MPI on small,
o�-the-shelf parallel systems.

Keywords
Pseudospectra, MPI, MATLAB, NOWs

1. INTRODUCTION AND MOTIVATION
Let A 2 C

n�n ha ve singular value decomposition (SVD)
A = U�V �, where � is diagonal with nonnegative elements
�j ; j = 1; :::; n, called the singular values of A, and U; V
unitary matrices having as columns the left and right sin-
gular vectors of A. Let also �(A) be the set of eigen val-
ues of A. The ��pseudospectrum ��(A) (pseudospectrum
for short) of a matrix describes the locus of eigenvalues of
�(A + E), for all possible E such that kEk � � for given

�This work has been partially supported by the Greek
General Secretariat for Research and Development, Project
�ENE� 99-07

1. De�ne mesh
h on a region of the complex plane
that con tains ��(A).

2. Compute s(z) := �min(zI �A) 8z 2
h.

3. Plot � contours of s(z).

T able 1:GRID method for computing pseudospectra.

�. The ��pseudospectra are regions of the complex plane
that sho w where the eigenvalues of a matrix could go when
the matrix is subject to perturbations and for this reason
ha ve many interesting properties; see Fig. 1 for examples of
pseudospectra of speci�c matrices. When A is normal (i.e.
satis�es the relation AA� = A�A), the regions are readily
computed from the eigenvalues and classical matrix theory,
that predicts that the pseudospectrum will consist of the
union of the disks of radius � surrounding each eigenvalue of
A. The pseudospectrum becomes of interest, on its own or
as an alternative to standard eigenvalue analysis, when A is
not normal (e.g. nonsymmetric); see [17, 19]. An important
barrier in making pseudospectra a standard engineering tool
is the expense involved in their calculation.

In the sequel w e assume that w e use the spectral norm
�max(A) = kAk2; we also de�ne s(z) := �min(zI � A), the
minimum singular value of matrix zI �A. It is known that
at poin ts where the minimum singular value is simple, func-
tion s(z) is real analytic, that is it can be expanded as Taylor
series of two variables (x; y) where z = x+ iy. In the sequel,
even if w e writes(z), w e reallymean s(x; y). It is known
that ��(A) can also be de�ned as the z 2 C that satisfy

��(A) = fz 2 C : s(z) � �g; (1)

where �min(�) denotes the smallest singular value of its ar-
gument matrix.

The standard algorithm (GRID) for the computation of ��(A)
is presen ted in Table 1. Two important features of GRID are
its straigh tforward simplicity and robustness. Its cost is
typically modeled by

CGRID = j
hj C�min
(2)

where j
hj denotes the number of nodes of
h and C�min
is

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ICS ’01 Sorrento, Italy
© ACM 2001 1-58113-410-x/01/06…$5.00

260

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

a measure of the average cost for the computation of s(z).
The total cost quickly becomes prohibitive with the increase
of either the number of nodes or the size of A. Given that the
cost of computing s(z) is at least O(n2) and that a typical
grid could easily contain O(104) points, the cost can be dra-
matic, even for matrices of small size. To get an idea of the
expense, we note that the MATLAB function pscont from
[9] that implements this algorithm took more than 2000 sec
to compute the pseudospectrum of a matrix of size 200 on
a 100 � 100 grid.

Cost formula (2) readily indicates two major classes of meth-
ods for accelerating the computation, based on the mathe-
matics and numerics of the problem: a) Reducing the num-
ber of nodes z and hence the number of evaluations of �min,
and b) reducing the cost of each evaluation of s(z). We
would be referring to methods that belong to category (a)
as domain-based and to those that belong to (b) as matrix-
based. The above can be combined with system-level ap-
proaches, such as the exploitation of hierarchical memory
and parallel processing. All these approaches are the sub-
ject of intense active research; see [18] for a comprehensive
survey of recent e�orts as well as the valuable Oxford Web
site [16]. Not surprisingly, given the computational complex-
ity of the problem, it is expected that a successful approach
must combine all of the above techniques. Moreover, in ad-
dition to accuracy and speed, a practical package would also
be evaluated on the basis of its user friendliness. Pursuing
this work, this paper contributes with the following:

i) Parallel algorithms for two recent methods, Pseudospec-
trum Descent and Inclusion-Exclusion /Modi�ed Grid,
for computing pseudospectra.

ii) Static assignment schemes as alternatives to more expen-
sive dynamic policies for load balancing when comput-
ing pseudospectra.

iii) MATLAB implementations based on MPI and parallel
multitasking on networks of uniprocessor PC's.

1.1 Computational environment
We used cheap o�-the-self computing equipment: Single pro-
cessor PCs, running Windows 2000, connected over fast a
Ethernet network. We developed our programs using MAT-
LAB and conducted our experiments over a novel environ-
ment that allows the concurrent operation of MATLAB; see
the next subsection. We use standard test matrices, drawn
from the Test Matrix Toolbox ([9]) and the Harwell-Boeing
collection ([7]), throughout our discussion.

1.1.1 Programming environment
We used the Cornell Multitask Toolbox [20], developed by
J.A. Zollweg and A. Verma at the Cornell Theory Center,
for MATLAB (version 5.3), the widely used problem solv-
ing environment from Mathworks. The multitasking tool-
box enables multiple copies of MATLAB to run simultane-
ously on a network of workstations and to exchange ma-
trices, thus facilitating parallel computations. MATLAB
copies are started on each machine using a command of the
form

mpirun -wd mydir -np size matlabdirnbinnmatlab.exe,

Cluster
CPU @ MHz Cache Kb RAM Mb Network
16 PIII 450-550 512 128 100 Mbit

Table 2: Hardware environment: PIII stands for
Pentium III.

where mydir is the working directory and size is the num-
ber of Matlab copies to be started. The Cornell Multitask
toolbox makes message-passing functions available to the
programmer so that parallel programs can be written as m-
�les. This convention is similar to that adopted by the MPI
Forum; the toolbox runs on top of a message passing envi-
ronment such as MPI/Pro. It is worth noting, that if one
wants to make use of the system, he would lose most of the
support available in the form of MATLAB's intrinsic func-
tion library. In our case, however, the algorithms we use are
of large granularity and justify the use of this system: In all
cases, each processor is assigned the computation of one or
more instances of s(z).

1.1.2 Hardware Environment
Experiments were run on a 16-node cluster of Pentium III

PCs with clock speeds ranging from 450-550 MHz. The
network was a 100 Mbit fast Ethernet. The con�guration is
summarized in Table 2.

2. PARALLEL GRID AND LOAD BALANC-
ING

As described in the Introduction, GRID is an embarassingly
parallel algorithm; this is assuming that we take the calcu-
lation of a single singular value as its basic computational
granule. Consider the application of GRID for a typical ma-
trix. Model (2) predicts that the total cost is equal to the
number of gridpoints times the average cost of computing
s(z) per gridpoint z. On the basis of this model, we con-
clude that on P processors, where P � j
hj, the parallel
cost would be equal to T (GRID; P) � T (GRID; 1)=P .

If the time needed by the chosen method to compute s(z)
at any point of the grid is nearly constant, then the parallel
version of GRID can trivially use any static assignment, in
which every processor is allocated jGj j � j
hj=P gridpoints
(no other constraints need to be satis�ed), to obtain nearly
perfect parallel performance. For this to hold, however, we
must assume that the workload for each SVD is balanced
across gridpoints. For example, let us take the case of a typ-
ical matrix used in pseudospectra computations, like grcar

of size n = 500 [9]. Then if we use MATLAB on a Pentium
III @ 700 MHz and apply its intrinsic function svd that com-
putes (all) singular values using a direct method, the average
runtime of each computation for a grid of size j
hj = d�2d,
where d = 25, is C�min

= 4:6 sec while the minimum and
maximum costs of the calculation at each point z are in the
interval [4:57; 4:65]. The conclusion is straightforward: If we
use a direct method to compute s(z), then equidistribution
of gridpoints to the processors is suÆcient for near perfect
speedups for GRID.

The situation changes drastically if we assume that the size
and sparsity structure of the problem force us to use an it-

261

21.36 12.92 4.34 16.90 75.46 13.39 2.48 5.25 11.28 15.74
23.47 11.14 2.50 22.16 22.11 354.50 14.97 2.48 6.95 12.05
21.53 13.04 3.45 262.12 6.94 6.93 42.62 2.49 4.32 10.41
24.02 17.14 9.63 2.60 2.50 2.51 6.90 15.06 2.59 7.86
27.96 20.61 17.19 12.98 13.04 2.48 6.91 19.80 2.47 6.98

Table 3: Runtimes (sec) using svds on 700 MHz Pentium III.

0.92 0.58 0.28 0.34 0.38 0.25 0.24 0.43 0.61 0.57
0.95 0.58 0.22 0.38 0.40 0.38 0.24 0.21 0.41 0.58
0.91 0.57 0.29 0.36 0.68 0.41 0.37 0.25 0.29 0.38
0.93 0.57 0.39 0.31 0.24 0.25 0.38 0.31 0.21 0.40
0.89 0.93 0.55 0.56 0.91 0.24 0.67 0.36 0.24 0.40

Table 4: Runtimes (sec) using lansvd on 700 MHz Pentium III.

erative method to compute each s(z). Consider the same
matrix as before, and the variability, with z, in the num-
ber of iterations of the iterative method, svds contained
in MATLAB. Then the times for the same grid are tabu-
lated in Table 3. The high variability implies that we have
to be careful about the assignment of gridpoints to proces-
sors and the e�ects of load balancing. We also note that
the above numbers immediately motivate research into ma-
trix based methods for speeding up the computation of each
s(z). We thus opted, in the course of this research, to use
a Lanczos based procedure that o�ered signi�cantly better
performance than the svds procedure from Mathworks. In
particular, in the tradition of earlier work ([4]), we used
a recent, e�ective, Lanczos based algorithm, proposed and
implemented in MATLAB by R.M. Larsen [11]. Algorithm
lansvd uses Lanczos bidiagonalization and partial reorthog-
onalization to compute the singular values of large sparse
matrices. lansvd represents a development over approaches
that are based on the explicit approximation of the eigenval-
ues of A�A or those of the augmented system [0; A;A�; 0].
As an indication of its performance, we tabulate in Table
4 the runtimes corresponding to the use of lansvd for s(z)
at the same points where we used svds in Table 3. Ob-
serve now that even though these numbers are much lower,
they occasionally di�er by a factor of 3. Clearly, with any
of these iterative methods, the allocation of gridpoints to
processors must be done in a manner that utilizes eÆciently
the resources. Unfortunately, however, we do not have a
priori information regarding the coordinates of points where
the costs will be much higher than others. So what could
we do? The major idea, discussed in the few papers that
have appeared on the parallel computation of pseudospec-
tra [8, 15], is to use a dynamic allocation scheme, in which
gridpoints are entered in a centralized queue that is man-
aged by some processor; as processors become available, they
pick a gridpoint, z, from the queue and go ahead with the
computation of s(z); the entire computation of s(z) can be
achieved without any need for communication with other
processors. Such a mechanism can be implemented at little
extra cost in a shared memory environment. In this case,
however, our main interest is for NOW type environments,
where parallelism originates mostly from the interconnec-
tion of PC's, some of which might contain more than one
processors. On the other hand, depending on the details

of the system, there is the possibility of overhead resulting
from the communication between processors and the proces-
sors that runs the queue as well as because of contention in
accessing the queue. This dynamic scheme was used in the
literature because it was assumed that we had no a priori
information regarding the time needed for the computation
of each s(z). But is it so? In the sequel, we show that a
heuristic strategy, based on the mathematics of the prob-
lem, appears to often o�er satisfactory load balance with a
static assignment, or else, to be a good initial guess for the
implementation of a hybrid policy.

2.1 Orderings for static assignment
We next consider the computation of the pseudospectrum
for matrices fish and triangle of size n = 300 on half of
a 50� 50 grid. The names of these matrices originate from
their pseudospectra, depicted in Fig. 1. The runtimes per
grid point are depicted in Fig. 2. As before, it is clear
that there is little that can be said, a priori, regarding the
distribution and one would tend to opt immediately for fully
dynamic load balancing. On the other hand, we observe that
runtimes do not vary abruptly from point to point, therefore
we expect that a block assignment would likely handle points
of similar computational diÆculty for s(z), therefore it can
run into load balancing problems, e.g. if all points of the
block are of similar diÆculty (say high) whereas another
block handles only points that are easier. In addition, the
multicolor ordering has the property that every processor
corresponds to gridpoints lying on the antidiagonals of the
domain, and is thus likely to deal with a more representative
sample from the entire grid.

Consider, now, an ad-hoc static assignment based on multi-
coloring (MC), reminiscent of orderings used in PDE solvers.
In particular, we colored gridpoints so that every P grid-
points lying adjacent on the same row or column are colored
di�erently. The coloring is simple to implement, e.g. label-
ing each gridpoint zjk with its indices (j; k) and then using
color numbers 0 � c � P �1 for any gridpoint whose indices
satisfy mod(j + k; P) = c. The case P = 2 corresponds to
the well-known red-black coloring. We should note, how-
ever, that there is a fundamental di�erence from the grid
multicoloring applied in PDEs, since in MC, each processor
is assigned all gridpoints with the same color.

262

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Figure 1: Pseudospectra of matrices fish and
triangle of size n = 300 and � from 10�1 to 10�9.

We experimented, with this multicolored static assignment
scheme (abbreviated MC) and compared its performance
with the standard static block assignment (SB), in which
each block consisted of a set of adjacent vertical lines of
gridpoints. We also compared with a scheme in which load
balancing is achieved dynamically, by means of a central
queue (QUEUE) from which tasks are dispatched to free
processors. An assignment such as SB would have been a
natural partition, had we decided to compute s(z) with a
direct method. Table 5 depicts the runtimes of the above
schemes. The times for the queue policy are listed in the
row corresponding to the number of MATLAB processes
actually computing s(z) and not handling the queue. For
example, the algorithm spent 227 sec to compute the pseu-
dospectrum of matrix triangle(300) using �ve processors,
four of which were actually computing s(z) and the �fth one
was handling the queue. Notice that for the case of P = 1
we used a 450MHz node. We observe that MC achieves far
superior performance than SB. On the other hand, dynamic
assignment starts by being superior to both for low proces-
sor counts, but its performance deteriorates and becomes
similar to MC when P increases. The situation is expected
to deteriorate for QUEUE as the number of CPUs grows due
to the contention at the queue and the increased number of

0
10

20
30

40
50

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
10

20
30

40
50

0

5

10

15

20

25
0

1

2

3

4

5

Figure 2: Runtimes (sec) for pseudospectra of ma-
trices fish and triangle of size n = 300.

messages.

We conclude this discussion with two additional schemes for
enhancing performance: The �rst is continuation, in which,
the minimum left singular vector at z is used as starting
point for the computation of s(z0), for values z0 close to z;
see [13] and [5] for a parallel scheme. Continuation can also
be applied in the static and dynamic schemes applied above.
In the case of MC, for instance, continuation can be used be-
cause gridpoints lying along the antidiagonals have the same
color and use singular value information from z = (xi; yj)
to compute singular values at (xi+1; yj�1) and (xi�1; yj+1).
The second is that we can combine static interleaving with
a distributed queue strategy. The idea is to organize grid-
points into groups, just as in multicoloring, and assign each
group to one processor. We let the gridpoints in each group
correspond to a local queue, from which the corresponding
processor takes its next task. When the queue empties, if
some processors still have enough tasks in their queues, we
could use task stealing to further balance the load.

3. BEYOND GRID
In this section we consider the parallel implementations of
two recent powerful methods for the computation of pseu-
dospectra, Inclusion-Exclusion and Pseudospectrum Descent.

263

triangle(300) fish(300)

P SB MC QUEUE SB MC QUEUE
1 933 - - 530 - -
2 632 572 453 306 320 254
4 454 265 227 166 146 127
8 289 130 114 125 68 66
15 171 61 62 66 38 36
16 166 60 - 60 34 -

Table 5: Runtimes (sec) of GRID for static block
assignment (SB), static multicolored assignment
(MC) and dynamic assignment (QUEUE) for
triangle(300)(cols 2-4), fish(300)(cols 5-7).

A common characteristic of both methods is that like GRID,
they both o�er signi�cant large grain parallelism and thus
are suitable for the programming environment o�ered by
the Cornell Multitask Toolbox. We �rst brie
y review these
methods and then discuss their parallel features and imple-
mentation.

3.1 Pseudospectrum descent method (PsDM)
The Pseudospectrum Descent Method (PsDM) was proposed
in [1] and is intimately connected with work described in
[3]. The idea behind the method is to use points from an
already existing pseudospectrum level curve approximated
by means of a set of N points zk 2 ��(A); k = 1; :::; N , to
generate in parallel points of a nearby level curve, @�Æ(A),
where Æ < �. The initial curve can be computed by ex-
isting parallel methods (e.g. [2, 15]). It was shown in
[1] that this process can be applied repeatedly to approx-
imate several pseudospectrum level curves. The advantage
of PsDM is that it is embarrassingly parallel, since there are
as many independent tasks as the number of points de�ning
@��. Moreover, it adjusts to the geometric characteristics
of the pseudospectrum, capturing disconnected components
that present a diÆculty for some domain-based methods.
Figure 3 illustrates the scheme. We start with N points
zk 2 @��(A). At the end of a single sweep, each point zk
is corrected to a corresponding point yk 2 @�Æ(A); Æ < �.
The correction is achieved by Newton iteration on function
G(x; y) = s(x; y)�Æ: The key ingredient is that the gradient
rG(x; y), necessary for the Newton iteration, can be easily
computed, since rG(x; y) = (<(v�u);=(v�u)), where v; u
are the right and left singular vectors corresponding to the
smallest singular value of A�zI, [6] and <;= denote the real
and imaginary parts respectively. This sweep is embarrass-
ingly parallel: each correction can be carried out completely
independently from all others. Furthermore, the sweep can
be repeated so as to compute a number of contours, mov-
ing towards the spectrum of A. This repeated application
constitutes PsDM.

3.2 Inclusion-Exclusion and modified grid
method

At each point of the domain of interest, GRID computes s(z)
and uses that information in order to classify the point z as
belonging to ��(A) or not. In that sense, GRID makes only
\pointwise" use of the information it computes at each z. It
was shown in [10], based also on work in [3], that knowledge
of the minimum singular triplet [�min(zI � A); umin; vmin]

ϑΛε(Α)

zk+1 zk

zk−1

zk+2

yk+2

yk+1 yk

yk−1
ϑΛδ(Α)

Figure 3: Computing an inner contour using PsDM.

1. Obtain an inclusion region
̂ � ��(A).

2. Compute set of exclusion regions �j intersecting
̂,

i.e.
̂ \�j 6= ;, so that ��(A) \�j = ;; j = 1 : n

and set
 =
̂n [j=1:n �j .

3. Discretize
 and call the resulting grid
h �
.

4. Compute the �min's on
h.

Table 6: General Inclusion-Exclusion methodology

at z 2 C provides much more information, that can be
used e�ectively to locate the pseudospectrum. In particu-
lar, from every z where we compute the triplet, it is possible
to construct \exclusion disks" that do not intersect the pseu-
dospectrum. The resulting algorithm was called MoG in [10]
and is based on the following theorem:

Theorem 3.1. If s(z) = r > � then

DÆ(z; r� �) \ ��(A) = ;;

where DÆ(z; r � �) is the open disk centered at z with ra-
dius r � � (refer to [14] for relevant theorems). We call this
an exclusion disk for the pseudospectrum, because it prov-
ably does not intersect with it. This above theorem was
used in the context of an \inclusion-exclusion" methodology,
presented in Table 6, to implement the rapid and judicious
pruning of the initial domain enclosing the pseudospectrum.
Despite its apparent simplicity, the above theorem provides
an extremely e�ective tool for computing pseudospectra; the
method is not only faster than GRID, but as it is based on
the same simple calculations, it is equally robust and basi-
cally renders GRID obsolete. In [10], the above theorem is
further re�ned to give larger exclusion regions of the form
DÆ(z; �(r � �)), for some factor � � 1, and the theoreti-
cal issues related to the method are investigated. As has
been observed in [10], the method is embarassingly paral-
lel, but presents the designer of a parallel algorithm with
many interesting challenges. We illustrate the application
of the above approach, as described in the above theorem,
for matrix triangle, in Figure 4. The e�ectiveness of the
method is seen by the number of computations of s(z) that
it required: Only 676 compared to 2500 for GRID.

264

−1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4: Using IE MoG to compute the pseudospec-
trum of triangle (32) for � = 1e� 1.

4. PARALLEL P SDM, GRID COARSENING
AND LOAD BALANCING

At its simplest form, PsDM o�ers large grain parallelism, like
GRID. The di�erence is that in PsDM, the number of indepen-
dent tasks at each step is much smaller as these correspond
to the independent calculation of singular values for points
approximating a one dimensional curve rather than a two di-
mensional domain. Therefore, as in GRID, the performance
may su�er when we use an iterative method to compute
each s(z), the cost of which di�ers signi�cantly from point
to point. It was shown in [1] that an interleaved assignment
of theN gridpoints that discretize the initial contour leads to
better balanced workloads. The algorithm was implemented
in MPI and tested on an 8 CPU SGI Origin 2000 system,
using ARPACK to compute singular values and vectors [12].
However, as noted in [1], when we need to compute ��(A)
for many values of �, it is likely that the number of points
needed to de�ne curves that correspond to di�erent values of
� that are relatively distant from each other, can also vary.
Typically, for example, curves lying in the interior might
need fewer points. Therefore, in [1] we proposed schemes,
called MEAN and GREEDY, which have as goal to coarsen the
one-dimensional grid de�ning the curve; it was shown that
these policies lead to signi�cant performance gains on a se-
quential environment, since their implementation is of low
complexity and their e�ect could be a reduction of the total
number of points that need to be computed. In a paral-
lel environment, however, the application of such schemes
is likely to alter the original load assignments, and hence
lead to potential load imbalance and lower performance. In
this section we examine PsDM when it is enhanced by the
aforementioned point reduction strategies. Both schemes
are based on the evolution of the smallest relative distance
between adjacent gridpoints on the curve. Assuming that
we wish to compute M contours starting from N points on
the initial contour, they can be expressed as described in Ta-
ble 7. Assuming that we have already computed lk�1 points

z
(k�1)
i 2 @��k�1 at step k � 1, let dk�1 to be the smallest

distance between any two consecutive points z
(k�1)
i ; z

(k�1)
i+1 .

DropPolicy selects lk � lk�1 points in accordance with one
of the following rules:

1. Start with N0 points of the initial curve @��0(A)
2. l0 = N
3. for k=1,M

3.1 Compute lk�1 points on @��k (A)
3.2 Apply DropPolicy
3.3 Keep lk � lk�1 points of @��k(A)

4. end

Table 7: PsDM incorporating grid coarsening.

NR MEAN GREEDY
P SB MC SB MC SB MC
1 380 - 350 - 283 -
2 188 195 169 170 143 142
4 99 98 75 89 80 74
8 50 48 31 44 54 39
16 23 21 18 24 22 22

Table 8: Runtimes (sec) for parallel PsDM for
triangle(300). i) no grid coarsening (cols. 2, 3) ii)
MEAN point reduction scheme (cols. 4, 5) and iii)
GREEDY point reduction (cols. 6, 7).

MEAN: If (jz(k)i � z
(k)
i+1j + jz(k)i+1 � z

(k)
i+2j)=2 < dk�1 then,

unless z
(k)
i has been already dropped, drop z

(k)
i+1 and

set lk = lk�1 � 1.

GREEDY: If jz(k)i �z(k)i+1j < dk�1 then, unless z
(k)
i has been

already dropped, drop z
(k)
i+1 and set lk = lk�1 � 1.

The above policies use dk�1; to compute it, we need to ac-
cess all distances between adjacent points. In the case of the
block assignment, this can be done in a distributed fashion,
computing minimum distances for each processor's share of
the points, and then computing the �nal result from the local
intermediate ones. Nevertheless, because this is a compu-
tation of low complexity, that we cannot implement on the
interleaved distribution of gridpoints, we let point dropping
be handled by the master process. In particular, processors
send back points to the master processor who applies the
point reduction policy, redistributes points to the proces-
sors and undertakes itself a segment of the points. There-
fore, we have a send - compute - gather - reduce cycle for
the master processor, and a receive - compute - send cycle
for the remaining, slave processors. After the master marks
which points remain, points could be dispatched, one by
one, to the slave processors for processing on a �rst come
�rst served basis. As in GRID, in the context of NOW and
COW con�gurations with a non-dedicated network, we con-
sider instead static assignment policies. Therefore, at each
step, we assign b lk

p
c points to each processor; our experi-

ments apply both the block and the multicolor (interleaved)
arrangement. Note that in this case, interleaving is trivial
as it is one-dimensional.

As in the previous case of GRID we use 1 450 MHz node
when P = 1 up to a full con�guration of P = 16 450-
500 MHz nodes. Our �rst experiment was with matrix
triangle of size 300. The initial contour was @�0:1(A)
approximated by 72 points and PsDM computed 20 curves

265

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
−3

10
−2

10
−1

40

45

50

55

60

65

70

75

ε

P
oi

nt
s

pe
r

cu
rv

e

MEAN
GREEDY

Figure 5: Top: Points computed by PsDM for 20 pseu-
dospectrum curves of triangle(300). Bottom: Num-
ber of points on each �-pseudospectrum curve with
MEAN and GREEDY reduction policies.

@��k (A); log10 �k = �1:1 : �0:1 : �3. The upper part of
�gure 5 illustrates the resulting discretized contours, using
no point reduction strategy, and the lower part the decreas-
ing number of points per curve, achieved by the two reduc-
tion strategies. Table 8 depicts the runtimes for i) no point
reduction policy (NR), ii) MEAN and iii) GREEDY point
reduction policies. We �rst observe the reduced runtimes for
point reduction relative to the \no drop" policy as well as
the overall satisfactory speedups. On the other hand, in con-
trast to GRID and results in [1], the interleaved assignment
even though it outperforms the static assignment when we
consider the GREEDY dropping policy, demonstrates rela-
tively similar performance to SB in the case of MEAN. An
explanation for this is that the performance of the under-
lying iterative solver, lansvd, is far smoother at the curve
points than the ARPACK code used in [1].

In the second experiment we used matrix pores 2 of size
1224 (9613 non-zero elements) from the Harwell-Boeing col-
lection, scaled by 10�7. The initial contour was drawn for
� = 0:1 and was approximated by 64 points, from which we
applied PsDM to compute 20 curves, corresponding to values
of � such that log10 �k = �1:1 : �0:1 : �3. Runtimes are
shown in Table 9.

We observe again the bene�cial e�ect of grid coarsening in
a parallel environment. We should note that we present
performance in terms of time rather than speedup because

NR MEAN GREEDY
P SB MC SB MC SB MC
1 7979 - 4751 - 3321 -
2 3892 4137 2358 2364 1694 1761
4 2035 2041 1177 1180 1070 857
8 1009 1011 585 584 966 442
16 448 450 660 349 650 269

Table 9: Parallel PsDM on 10�7pores 2. Runtimes (sec)
with i) no point reduction (cols. 2,3) ii) MEAN
point reduction scheme (cols. 4,5) and iii) GREEDY
point reduction scheme (cols. 6,7).

in a heterogeneous system , \speedup" can have a di�erent
value, depending which processor is used to obtain T1, the
\single CPU runtime". We observe again a behavior similar
to the previous experiment, that suggests choosing MC over
SB, especially when many processors are employed.

5. PARALLEL M OG AND LOAD BALANC-
ING

As discussed above, for any z 2 C
n , the computation of s(z)

results in one of the following two actions: Either s(z) � �,

therefore z 2 ��(A); otherwise, all gridpoints ẑ 2 Ẑ :=
fẑjẑ 2
h; jẑ � zj < s(z) � �g are excluded and need not
be considered any further. Therefore, if we apply paral-
lelism to speed up the computation in the same manner
we did with GRID, allocating to processors gridpoints z and
letting them compute the corresponding s(z) values, every
computation is likely to exclude points that lie within an
exclusion disk centered at z. It is worth noting, and this is
one more point making MoG very interesting, that the actual
exclusions depend on the order in which the gridpoints are
swept. Consequently, if we adopt a static allocation policy
such as block partitioning, a single computation within one
processor could exclude many points allocated to the same
processor. In some respects, we have an action reverse from
locality: If we compute s(z) then it is likely that we will not
have to compute s(z+�z) at all! This means that any static
policy that assigns neighboring points to the same processor
is likely to lead to load imbalance, since those points will
be excluded if they happen to lie outside the pseudospec-
trum. For this reason, we consider here an implementation
in which processes have access to a common area that main-
tains up-to-date information about the status of each point.
In particular, points are classi�ed in one of three categories:
Active, in the sense that their s(z) still needs to be com-
puted, inactive, in the sense that they have been excluded,
and �xed, in the sense that s(z) � �. The pseudospectrum
contour is plotted based on the values of the �xed points.
As a result, we opt for a dynamic policy.

The parallel algorithm is designed based on the following
steps. We start with an initial discretization
h of a rectan-
gular region
 that is guaranteed to contain the pseudospec-
trum.
h is de�ned using its two antidiagonal vertices �;
,
and the number of its rows and columns. Initially, we de-
�ne the set of active nodes N as the set of all mesh nodes.
During the course of the algorithm, this set is updated to
contain only those mesh nodes that have not been excluded
in previous steps. The algorithm proceeds in three phases.

266

In the �rst phase we aim to �nd the smallest bounding box
B of @��(A), the perimeter of which does not contain any
active points. The second phase performs a collapse of the
perimeter of B towards @��(A). At the end of this phase no
further exclusion can be performed. The set of active nodes
N contains only mesh nodes zin 2 ��(A). Finally, in the
third phase all remaining s(z); z 2 N are computed.

We provide a detailed description, starting with the de�ni-
tion of neighboring points in the set of active nodes N .

Definition 5.1. De�ne as NBN (z) the set of all neigh-
boring mesh nodes zN 2 N of node z 2 N (the diagonal
directions are not considered).

Phase 1 (Exclusion) : Initialize the set B to contain the
points at the perimeter of
h. Select P of these points,
where P is the number of available processors, that are
equidistributed along B. Assign each one, say zk, to
an available processor and compute the corresponding
s(zk). The master processor gathers all s(zk) and com-
putes the set E , of points rendered inactive because of
the exclusion:

E = fz 2 N : jz � zkj < s(zk)� �g (3)

The master also updates the set of active points:

N = N n E (4)

Rede�ne B : �B = (min(<(N));max(=(N))),
B =
(maxf<(N)g;minf=(N)g). Repeat the above until B
contains no active nodes.

Phase 2 (Collapse) : Any node z that excludes only itself
is marked as \�xed". De�ne F as those points that are
currently marked as such. Initially, F = ;. We also
de�ne the hull H of N as

H = fz 2 N : (jNBN (z)j � 3) ^ z =2 Fg (5)

Initially H = B. Distribute each one of P points
zk 2 H, one to each of the processors and compute
the corresponding zk. The master processor gathers
all s(zk), computes the set E of points rendered in-
active because of exclusion as in Formula (3) above
and updates the set of active points as in formula (4)
above. The processor also updates H and F : jHj = 0.

Phase 3 (Grid) : Compute all remaining s(z); z 2 N

Some explanations are in order: The motivation behind the
�rst phase of the algorithm is to attempt large exclusions
that have small overlap. Since the exclusion disks are not
known a priori, the heuristic is that gridpoints that lie on the
outer convex hull enclosing the set of active points will o�er
a better chance for larger exclusions. The second phase of
the algorithm is designed to sieve through those points that
should remain active from those that should be rendered
inactive but have not been so in phase 1 because of their
special location; e.g. phase 1 would not exclude points that
lie deep inside some concave region of the pseudospectrum.
An example of this, for matrix grcar (1000), is shown in
Figure 6, where we labeled with dots (`�') those points that

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

3

4

Figure 6: IE MoG outcome of Phases 1 (dots `�') and
2 (circle `o')for matrix grcar (1000) on 50� 50 grid.

remain active after the end of phase 1 and with circle (`o')
points that remain active after phase 2 is completed. A
master node takes on the responsibility of gathering the sin-
gular values and distributing the points, on the bounding
box B (Phase 1) and on the hull H (Phase 2). The admin-
istrative task assigned to the master node (exclusions and
construction of the hull) is light; it is thus feasible to also
use the master node as a singular value calculator. In con-
clusion, phases 1 and 2 adopt a synchronized queue model:
The master waits for all processes, including itself, to �nish
computing s(z) for their currently allocated point and only
then proceeds to dispatch the next set.

Phase 3 is similar to the parallel implementation of GRID,
the only di�erence being that the points where we need to
compute s(z) are known to satisfy s(z) � �. For this reason,
we experimented with the same policies described in Sec-
tion 2.1, namely static assignments (SB and MC), as well
as dynamic allocation (QUEUE). As in Section 2.1, for the
latter case we used an additional MATLAB process as queue
manager.

The �rst test matrix was grcar(1000) on a 50� 50 grid for
� = 0:1. Table 10 depicts the performance of the method for
all assignment policies. In each row, we write the number
of processors used and then the times taken by phases 1
and 2 which are common to all allocations. We then list
the time taken by phase 3 as well as the total time for each
allocation. Remember that when using QUEUE in phase 3,
P available processors correspond to P�1 working processes
and 1 queue monitoring process.

Commenting on the results, we �rst note that all these num-
bers represent an extreme improvement over the use of GRID,
where 50� 50 computations of the minimum singular value
of a matrix of size 1000 would have been required, necessi-
tating more than 2.5 hours of calculation on one processor
compared to less than 1 hour for one processor and 4 minutes
for 16 processors using IE MoG. We next note the reduction
in time as the number of processors increases. Phases 1 and
2 take the least time but also lead to smaller speedups than
phase 3, which is embarassingly parallel, like GRID. The sec-
ond test was with matrix pores 2. Results are shown in Ta-
ble 11. We note that the performance of QUEUE is slightly

267

P Phase1 Phase 2 SB MC QUEUE
Ph. 3 sum Ph. 3 sum Ph. 3 sum

1 150 326 1434 1910 - - - -
2 101 181 707 989 703 985 669 951
4 62 90 369 521 361 513 338 490
8 120 25 193 338 178 323 167 312
15 43 17 112 172 100 160 90 150
16 115 16 110 239 96 227 - -

Table 10: Runtimes (sec) for parallel IE MoG for grcar(1000) using i) block (SB) ii) multicolor (MC) and iii)
QUEUE.
 = [�4; 4]� [�4; 4] using 50� 50 grid and � = 0:1.

P Phase1 Phase 2 SB MC QUEUE
Ph. 3 sum Ph. 3 sum Ph. 3 sum

1 794 1324 4756 6874 - - - -
2 574 644 2290 3508 2436 3654 2132 3350
4 271 347 1216 1834 1205 1823 1072 1690
8 183 158 540 881 576 917 523 864
15 102 93 299 494 300 495 280 475
16 81 104 275 460 278 463 - -

Table 11: Runtimes (sec) for MoG on matrix 10�7pores 2.
 = [�2:5; 1:5]� [�1:5; 1:5] using a 50�50 grid for � = 0:1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X

Y

tim
e
s

p
e
r

m
in

im
u
m

 S
V

D

Figure 7: Times to compute s(z) at each one of the
points remaining in phase 3 of MoG.

better than that of the policies using static allocation. We
note, however, that these experiments were conducted under
very low load conditions for the network. Since the static al-
location regimes give similar performance with the QUEUE,
we opt for the former. Regarding the static schemes we note
that the advantage of MC over SB is far inferior to the one
observed in GRID. This is because the runtimes of lansvd
at the active points demonstrate very little variation. This
is illustrated in Figure 7, where we plot the time needed to
compute s(z) with lansvd at each one of the points remain-
ing in Phase 3 for matrix pores 2. The only cases where
times are signi�cantly di�erent is for those points lying on
the real axis.

6. CONCLUSIONS
Pseudospectrum calculations are enormously time consum-
ing and represent an important computational challenge that
requires numerical and computational advances. We have

described initial designs of parallel state-of-the-art algorithms
and have demonstrated that their use signi�cantly improves
the performance; we also highlighted the importance of proper
data assignment and load balancing for their e�ective imple-
mentation. Given the large grain of the independent compu-
tations, we expect that the patterns observed in this paper
will remain valid as long as the number of processors re-
mains moderate compared to the number of gridpoints. We
also note that at this stage of our work, we concentrated
on the parallelism available at the level of the calculation
instead of the way this parallelism is serviced by the hard-
ware platform, for which more emphasis must be paid to
load balancing at nodes of di�ering capacities. We �nally
note that this work is part of our e�orts to build algorithms
and software for computing pseudospectra that can be used
for applications originating in Chemical Engineering.

Acknowledgement
We thank our colleagues from the Parallel Systems group
and the Computer Center of the Computer Engineering and
Informatics Department for their support in these experi-
ments.

7. REFERENCES
[1] C. Bekas, and E. Gallopoulos. Parallel

Computation of Pseudospectra by fast Descent.
Presented at International Workshop on Parallel
Matrix Algorithms and Applications (PMAA'00),
Neuchatel, Switzerland. In URL
www.ceid.upatras.gr/scgroup/Reports. Submitted
for publication, Nov. 2000.

[2] C. Bekas, and E. Gallopoulos. Cobra: Parallel
path following for computing the matrix
pseudospectrum. Parallel Computing (to appear).
Available at www.hpclab.ceid.upatras.gr in
/faculty/stratis/Papers.

268

[3] C. Bekas, and I. Koutis. Parallel Algorithms for the
Computation of Pseudospectra. Master's thesis,
Computer Engineering and Informatics Department,
University of Patras, June 1998. In Greek.

[4] M.W. Berry. Large scale singular value
decomposition. Int. J. Supercomp. Appl. 6 (1992),
13{49.

[5] T. Braconnier. Fvpspack: A Fortran and PVM
Package to Compute the Field of Values and
Pseudospectra of Large Matrices. Numerical Analysis
Report No. 293, Manchester Centre for Computational
Mathematics, Manchester, England, Aug. 1996.

[6] M. Br�uhl. A curve tracing algorithm for computing
the pseudospectrum. BIT 33, 3 (1996), 441{445.

[7] I.S. Duff, R.G. Grimes, and J.G. Lewis. User's
guide for the Harwell-Boeing sparse matrix collection
(Release I). Tech. Rep. TR/PA/92/86, CERFACS,
Toulouse Cedex, France, Oct. 1992.

[8] V. Frayss�e, L. Giraud, and V. Toumazou.
Parallel computation of spectral portraits on the
Meiko CS2. In LNCS: High-Performance Computing
and Networking (1996), H. L. et al., Ed., vol. 1067,
Springer-Verlag, pp. 312{318.

[9] N.J. Higham. The Test Matrix Toolbox for MATLAB
(version 3.0). Tech. Rep. 276, Manchester Centre for
Computational Mathematics, Sept. 1995.

[10] I. Koutis, and E. Gallopoulos. Exclusion regions
and fast estimation of pseudospectra. Submitted, 2000.

[11] R. M. Larsen. SVD of sparse or structured matrices
using Lanczos bidiagonalization with partial
reorthogonalization. PhD thesis, University of Aarhus,
October 1998.

[12] R. Lehoucq, D.C. Sorensen, and C. Yang. Arpack
User's Guide: Solution of Large-Scale Eigenvalue
Problems With Implicitly Restarted Arnoldi Methods.
SIAM, Philadelphia, 1998.

[13] S.H. Lui. Computation of pseudospectra with
continuation. SIAM J. Sci. Comput. 18, 2 (1997),
565{573.

[14] L.N. Trefethen M. Embree. Generalizing
eigenvalue theorems to pseudospectra theorems. Tech.
Rep. 00/12, Oxford University Computing Laboratory,
Numerical Analysis Group, June 2000.

[15] D. Mezher, and B. Philippe. Parallel computation
of the pseudospectrum of large matrices, Nov. 2000.
Submitted for publication.

[16] Pseudospectra Gateway. At the Oxford University site
http://web.comlab.ox.ac.uk/projects/pseudospectra.

[17] L.N. Trefethen. Pseudospectra of matrices. In
Numerical Analysis 1991, Proc. 14th Dundee Conf.,
D. GriÆths and G. Watson, Eds. Essex, UK:
Longman Sci. and Tech., 1991, pp. 234{266.

[18] L.N. Trefethen. Computation of pseudospectra. In
Acta Numerica 1999, vol. 8. Cambridge University
Press, 1999, pp. 247{295.

[19] L.N. Trefethen, A.E. Trefethen, S.C. Reddy,
and T.A. Driscoll. Hydrodynamic stability without
eigenvalues. Science 261 (July 1993), 578{584.

[20] J.A. Zollweg, and A. Verma. The Cornell
Multitask Toolbox. Directory
Services/Software/CMTM at URL
http://www.tc.cornell.edu.

269

