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Abstract

A matrix-free algorithm] RLANB, for the efficient computation of the smallest singular triplets of large and
possibly sparse matrices is described. Key characteristics of the approach are its use of Lanczos bidiagonalization
implicit restarting, and harmonic Ritz values. The algorithm also uses a deflation strategy that can be applied
directly on Lanczos bidiagonalization. A refinement postprocessing phase is applied to the converged singular
vectors. The computational costs of the above techniques are kept small as they make direct use of the bidiagona
form obtained in the course of the Lanczos factorization. Several numerical experiments with the method are
presented that illustrate its effectiveness and indicate that it performs well compared to existing codes.
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1. Introduction

Consider the singular value decomposition (SVD¥ U X' V* of a matrix A € C"*", whereU €
cm=m v e C™" and, without loss of generality, > m. Denote its singular triplets bgs;, u;, v;), i =
1, ...,min(n,m)=m,wherec, >0, >--- >0, > 0,41 =--- =0, = 0. In this paper we are interested
in computing few of the smallest singular triplets of a general large sparse matrix. This problem arises
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in several important applications including total least squares [6], information retrieval [9], image and
signal processing [50], control [13] and matrix pseudospectra [49].

The computation of few extremal singular triplets of large sparse matrices has been the focus of many
research efforts, see [3,4,11,16,29,32,42,45,47] as well as [2,12,17,23,41,48] and numerous reference
therein. Recent needs in applications such as the ones mentioned earlier, however, have motivatec
research oriented towards the development of algorithms for the computation of the smallest singular
triplets, a problem that is acknowledged to challenge the capabilities of current state-of-the-art software,
e.g., see [1,8,14,18,20,21,34].

It is common practice to approximate singular values by computing the eigenvalues of related
Hermitian eigenproblems. Furthermore, since computing the smallest eigenvalues of a matrix is
equivalent to computing the largest eigenvalues of its inverse, significant work has been done on “shift-
and-invert” techniques. For example, this approach was adopted iVAMEAB (version 6)svds
routine, that is based oARPACK [32]; the latter, implements one of the most successful theoretical
frameworks for the effective implicitly restarted Arnoldi technique, based on seminal work of Sorensen,
Lehoucq and collaborators. However, as the size of the matrices increases, this approach becomes to
expensive in terms of storage and computational costs, as it requires the factorization of and solution
with large sparse, possibly indefinite matrices. Developments that attempt to remedy this problem
concern inexact inverse iteration and inexact inverse Lanczos methods (see, for example, [27] and [2,
Section 11.2]). An alternative approach that avoids such solves and is frequently effective is based on the
use of harmonic Ritz values [38,45].

In this paper we propose and investigate an algorithm, wel ¢alIANB, that is based on Lanczos
bidiagonalization (LBD), a method for computing singular values originally due to Golub and Kahan
[15]. This is a matrix-free method for the computation of the singular triplets, thus the only operations
with A are matrix vector multiplications with it and its Hermitian adjoist. We enhance the LBD
algorithm with state-of-the-art technology for the effective computation of few small singular triplets of
large and possibly sparse matrices. These improvements are described in the paper, whose structure is
follows. In Section 2 we review Lanczos bidiagonalization and describe its limitations when deployed
to compute the smallest singular triplets. In Section 3 we show how to incorporate implicit restarts,
introduced in [47], that permit Lanczos bidiagonalization to maintain limited storage and computational
requirements per restart. In Section 4 we study the use of Ritz and harmonic Ritz values as implicit
shifts. In Section 5 we show how to apply the orthogonal deflation transformation proposed in [46] in
the context of Lanczos bidiagonalization to also make it more effective when the singular values are
clustered. In Section 6 we show how to use refinement, originally proposed for eigenvectors in [24], to
enhance the computation of singular triplets. In Section 7, we describe the overall strudt&icANB.

Finally, in Section 8 we describe numerical experiments that illustrate the behaVviBL&NB in various
cases and compare its performance with related methods.

Implicit restarting in the context of LBD was first studied by Bjorck et al. in [5] and later Larsen
combined it with partial reorthogonalization in [28,31]. After submitting the first version of this paper, we
became aware of a contribution conducted independently by Jia and Niu [25] which proposes implicitly
restarted LBD using “refined shifts” [25], in order to compute a few largest or smallest singular values.
An important difference betwedrnRLANB and the above approaches is the use of harmonic Ritz values
in order to effectively approximate the smallest singular values of the matrix. Furthermaoiel.ANB
we have adopted a philosophy that acknowledges the inherent difficulties of the problem and attempts to
address them by combining state-of-the-art techniques, such as deflation and use of refined residuals.
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1.1. Definitions and equivalent Hermitian eigenproblems

The following well-known connections (see, e.g., [17, Section 8.6]) between the SVD and the eigen-
decompositions of the following Hermitian matrices

0 A

* * J—
A*A, AA* and C_(A* 0

) = C(m+n)X(m+n)
are fundamental to our discussion:

vH(4*4)V =diag(oZ,....02,0,....0). (1)

» Y mo

U*(AA*)U =diag(o?, ..., 02). )

PartitioningV asV = [V4, V5], whereV; consists ofn columns and setting

Y—i -U 0 U
BNARERZAZA AN

then,Y is an orthonormal eigenbasis for the augmented méatrand

Y*CY:diag(—al,...,—o*m,O,...,O,Ul,...,Um). 3)

n—m

The above equivalences provide a convenient framework when seeking few singular values of large
matrices because they permit the computation of singular triplets using Hermitian eigensolvers as a
black box. The problem has been studied in the literature and there exist several software packages
for its solution (see, e.g., [28,32,52]), and software based on the Jacobi-Davidson method (e.qg., see, [22]
and Section 8). Nevertheless, when seeking few small singular triplets, as we do in this paper, several
complications arise that must be addressed [40,45].

In particular, since we are interested in the smallest singular valuds efiuivalent targets are the
smallest eigenvalues of eitherA* or A*A, or interior eigenvalues of (in the latter two, excluding
spurious zeroes). Observe that, while squaring the singular valuasadll induce an increase of the
separation of the largest ones, it will also cause a corresponding clustering of the smallest ones; this can
cause problems for Hermitian eigensolvers [39, Section 11.7]. Furthermatas iill-conditioned, and
we denote by (A) its condition number with respect to the 2-norm, the squaring of the condition number,
k(A*A) =k (AA*) =Kk (A)?, is likely to cause significant loss of accuracy for small singular values. Note
that for rectangular matrices the above analysis holds if we refer instead to the “effective condition”
lAl21lAT|l2, where AT denotes the pseudoinverse Af(see [7, p. 28]). If, on the basis of relation (3),
we select instead to recover the singular tripletsAofrom the eigenvalues of the augmented matrix
C, we have to approximate interior eigenvalues. Unfortunately, such a computation also challenges the
performance of Hermitian eigensolvers, e.g., their convergence behavior becomes irregular (see, e.g., [45
Section 5]). Furthermore, since each singular value corresponds to an eigenvaldespattermitian
eigensolvers tend to take twice the number of iterations. An additional difficulty stems from the increased
length ¢z + ) of the basis vectors and corresponding increase in the storage requirements, from which
approximations to the singular values are drawn.
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2. Lanczos bidiagonalization

We next describe Lanczos bidiagonalization (LBD) that holds a central role in our framework.
LBD was originally proposed by Golub and Kahan (cf. [15] and [17, Section 9.3.3]) as a process for
transforming a matribxd € C™*" to upper bidiagonal formB € R”*". In line with the bidiagonalization
algorithms presented elsewhere in the literature, we will consider a version of the process that transforms
A to lower bidiagonal form (first discussed in [37]). In fact, our discussion owes a lot to the work of
Larsen in [29]. Afterk < m (successful) steps, LBD produces two blocks of Lanczos vectors

Upsr=[us, uz, ..., upq] € CEHD, Vi =[v1, vz, ..., 5] € C,

whose columns are orthonormal bases for the Krylov subspgesAA*, u;), K (A*A, v1), respec-
tively (where, as usual, for any square matsix C"*", K,,(G, r) = spanr, Gr, ..., G""'r}) and satisfy
the following relations:
AV = Ui By, (4)
A"Upi1 = Vi By + o 11Vk41€5 415 ©)
where the matrixB, € R**D>** has real elements and is lower bidiagonal:
a1
B2 a2
By = Bs - : (6)
. "
:Bk+1
The outline of LBD is provided in Algorithm 1.

Algorithm 1 (Lanczos bidiagonalizatign(cf. [2,15,29]) The real scalarg;, 8; are the diagonal and
subdiagonal elements respectively, of the bidiagonal m&rix

Input A € C™*", starting vectolpy € C" and scalak
Output Bidiagonal matrixB; € R*+*D>xk and orthogonal bases
Uk+l = me(kJrl)’ Vk = Cnxk

1. Setp1 = || poll2, u1 = po/p1 andvg =0
2.fori=212,...,k

3. ri=A%; —Bivi_1
4. a;=|rill2

5. vV = ri/C(,‘

6. pPi= AU[ — ;U

7. Bivr=lpil2

8. wuit1=pi/Bin
9.end

Following the execution of LBD, the singular values Bf could be used as approximations to the
singular values ofA. If we premultiply both sides of (5) witid and use (4) we obtain
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AA Up1 = (AVQ) B + o q1Aviqae; = U1 Bi B + a1 Avig1e g (7)

However, from the LBD algorithm (cf. lines 6-8 of Algorithm 1) we can also write

AA U1 = U1 BiBi + o1 (g attny 1 + Brr2Uir2)eg 1
= U1 (BiBf + of 1ex1€f 1) + i1 Brs2llir2€f 1. 8)
Matrix ByB; + o2, jer+1e],, is real symmetric and tridiagonal, therefore, in exact arithmetic, relation
(8) is a symmetric Lanczos factorization and hence LBD is equivalent to symmetric Lanczos iteration on
AA*.
It is also known that there is an equivalence between LBD applied and Lanczos applied on the
augmented matrix’ [17, Section 9.3.2]. In particular, consider the starting vector

g1=(45.0...0)" Jusllo=1

n

After 2k steps of Lanczos with starting vecigr the following relation holds:

u
CQax = QuTo + Bry1g2i 1165 = QT + ,3k+1< koﬂ> (29 9
whereg,;_1 = (uj., 0)* andg,; = (0, v;f)*, j=1,...,2kand
0 o
ar 0 B2
Ty = B2 0O
. o
(097 0

After an odd-even permutation of rows and columns of (9), we obtain a Lanczos factorization that
contains both LBD factorizations (4) and (5):

0 A\(Uwss O\ _ (U 0\(O B 0 0
<A* o)( 0 vk>—< o vi)\B 0) " \eave, 0) (10)

We next discuss some of the difficulties of the LBD algorithm. An important difficulty with LBD,
typical of Lanczos type algorithms, is the loss of orthogonality among the basis vecigramd U, 1
[36]. The application of reorthogonalization schemes can remedy the problem, though this is at an extra
computational cost. A compromise is to use partial reorthogonalization schemes that dynamically update
the level of orthogonality among the basis vectors at each step. Recent work of Larsen has produced
MATLAB codes that implement partial reorthogonalization in the context of LBD; see [28-31] as well
as [43,44]. When the matrix at hand is very large, in order to obtain acceptable approximations to the
smallest singular triplets, even using sophisticated schemes for partial reorthogonalization, convergence
can be slow and the bas&s, 1, V. need to become so large that computational and storage costs become
overwhelming.

As we show in the next sections, to address these problems, we incorporate implicit restarting
mechanisms in LBD that maintain computational and memory requirements constant at each step.
Furthermore, we combine implicit restarting with harmonic Ritz values for the approximation of the
smallest singular triplets.
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3. Implicitly restarted LBD

Implicit restarting, proposed by Sorensen in [47] for the Arnoldi and Lanczos iterations, through its
practical implementation iARPACK [32], is widely acknowledged to be one of the most successful
frameworks for solving very large eigenproblems. In this section we describe how to apply implicit
restarting in the context of LBD. Implicit restarting in LBD was first studied in [5] and was later combined
with partial reorthogonalization in [28,31].

In Section 2 we established that LBD is equivalent to Lanczos appliedi ah, according to
factorization (7). Therefore, afté= k + p steps of LBD we can apply implicitly shifted QR steps on
matrix 7; = B; B}, which is real symmetric and tridiagonal. Alternatively, we can apply Golub—Kahan
SVD steps [17, Section 8.6.2] directly on the bidiagonal ma®yiin order to enhance stability [39]. The
implicitly shifted QR step is applied directly on an upper bidiagonal matrix by means of bulgechasing
as shown in Algorithm 2. The first Givens rotation (line 4) creates a “bulge” (i.e., a nonzero element in
the subdiagonal) and the trailing Givens rotations “chase” the bulge out of the matrix in order to restore
its upper bidiagonal form. Since we work with a lower bidiagonal matrix, the update can be written as
B" = Q. B;Q%, whereQ; € RU“DxU+D and 0 € R are orthogonal matrices that implement Givens
rotations. Therefore, by updating the basgandU,,, we can recover the bidiagonalization

AVk+ = U/;:’J.Blj—’

whereV," = V,Qr(1:k,)* andU;", = U110 (1: k + 1,:)*. This updated LBD factorization is what
we would have obtained aftérsteps of LBD with the special starting vector

uj = (AA* — uzl)ul,
using shifty.

Algorithm 2 (BulgechasinyGolub—Kahan SVD steJd 7, Section 8.6.2]

Input Tridiagonal matrix?; = B, B}, implicit shift u
Output Updated upper bidiagonal matri"
1.Sety=t1—pandz=t

2.fori=1:1-1

3. Determinec = coq0) ands = sin(9) such that

v 2(50) =0

4, Apply to B, the Givens rotation from the righB, = B,G(i,i + 1, 9)
5. Set:y = bi,i andz = biJrl,i
6. Determiner = co960) ands = sin(®) such that
(50" Q)=0)
7. Apply to B, the Givens rotation from the lelt; = G(i,i +1,6)" B,
8. ifi </—1then
9. Set:y = bi,i+l andz = bi,i+2
10 end

11.end
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If the previous procedure is repeated for- 1 shifts, sayu,, us, ..., i, We obtain a bidiagonalization
that corresponds to the starting vector

p
ui =[J(AA" = p21)us,
i=1
and therefore we can apply polynomial filtering with implicit restarts of LBD as an equivalent to
implicitly restarted Lanczos oA A*.

We also showed in relation (10) that LBD is equivalent to Lanczos applied on the augmented matrix
C. It is thus natural to ask whether implicitly restarted LBD can be equivalent to implicitly restarted
Lanczos onC. If the implicit restarting mechanism is applied directly 6nthe updated starting vector
g7 =[1/-1(C — ;i g1 will not have, in general, the special structyfe = [« ; 0] and therefore it will
not be possible to extract an LBD decomposition from it. This is shown in the following proposition that
is stated assuming exact arithmetic.

Proposition 1. It is not possible, in general, to apply implicit QR steps on the Lanczos factoriz@&jon
of the augmented matrik, and obtain a Lanczos factorization that can be computed by LBD.

Proof. Implicit restarts essentially perform polynomial filtering on the starting vactoffter p implicit
QR steps on factorization (9), the updated Lanczos factorization can be written as

CQELk = QZFszz + :Blj+1q;k+1e§k’

with starting vectoy;” = 7 (C)q1 wherer (C) is a non-trivial polynomial of the augmented matéxof
degreep. Observe now that the powers Gfhave the following special structure

2 _[(AADT 0 241 _ 0 AA*A] .
C _[ 0 (A*A)'}’ co4m = A*(AA*) 0 , i=12,....
If we define the polynomialg, and s, containing strictly odd and even powers respectively such that
7(C)=m,(C)+ m.(C), then for the polynomiak (C) it holds that

_ | m(AAY)  Am.(A*A)
()= [A*ne(AA*) 7,(A*A) ] '

Since for the starting vector it holds thgt = [«7, O], we have that

+ T[(I(AA*)MJ.
7 A (AA ) uy |
Observe now that according to (2) it holds that

T (AA*) =Um (AU*, A=diag(o?,...,d2),

m

and thug||A*m,(AAM uqllo = |A*Ur,(A)U*uq|lo = ||V X*7,(A)U*uqll2, where we have used the SVD
of A. SinceV is orthonormal, if we denote b¥; = diagoy, ..., 0,1, it follows that

| (A7), = | S U], = 152 OF (SRl

Notice thatU*u, cannot be zero sincE is orthonormal and has full rank. Furthermore, for a general
matrix with m distinct nonzero singular values, the above norm would be zero omdy(é?) = 0 for
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i =1,...,m. Since the degree of, is p < m, however, this can only happen if, is identically
zero. Therefore, in general, the updated veetprcannot have the special structugg = [u7; 0],
thus the updated Lanczos factorization on the augmented n@td&nnot be equivalent to an LBD
factorization. O

4, Shift selection strategies

We next consider shift selection for the implicitly restarted LBD. In particular, we examine two
strategies: (i) exact Ritz values and (ii) exact harmonic Ritz values. Alternative shift strategies include
the zeros of Chebyshev polynomials and Leja points (see, e.g., [10] and references therein).

4.1. Ritz values

Using relation (5) and premultiplying witti* we see that after= k 4- p steps of LBD, the following
relationship holds:

UI*AA* U1+1 = UI*AV]BI + C¥]+1U1*AU1+161*+1.

Applying relation (4) and considering only the figstolumns of each side it follows thafAA*U, =

B, B}, where B, € R"*! denotes the square lower subdiagonal matrix that we obtain by omitting the last
row of B,. Therefore, the squares of the singular values of the mairate Ritz values of the Hermitian
matrix AA* and therefore provide approximations to the singular valued.ddur exact Ritz values
strategy is to pick as implicit shifts the larggsif the squared singular values Bf. It is worth noting

that since our target is to compute singular valueg,cdnd not eigenvalues d, B/, we do not expect

loss of precision due to squared conditioning. Furthermore, by not approximating squared singular values
we do not aggravate any existing clustering of the smallest singular values of

4.2. LBD and harmonic Ritz values

Ritz values readily provide a straightforward shift strategy. It is often the case, however, that the
smallest singular values oA are clustered. This is a situation that can significantly slow down the
convergence of implicitly restarted Lanczos. In order to secure satisfactory convergence rates we can
try to approximate the smallest singular valuesAoby computing the largest Ritz values @fA*) .

In the remainder of this section we will be assuming tAabas full rank. In line with the matrix-free
approach aspired to in this paper, however, we wish to avoid explicit computationgAwmith 1. This
becomes possible using the concept of harmonic Ritz values [38]:

Definition 2. A \[alueék € Cis a harmonic Ritz value of a matrigx € C"*™ with respect to some linear
subspacéV if 9,:1 is a Ritz value ofG~! with respect taV.

Returning to the Lanczos factorization (7), since we are interested in the Ritz valyesatf
we could compute harmonic Ritz values #A*. We do this by means of oblique projection and the
corresponding Petrov—Galerkin condition. Our presentation in the remainder of this section owes a lot to
the discussion of Sleijpen and van der Vorst in [45] regarding harmonic Ritz values (the reader can also
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refer to [21] for a relevant discussion). In particular, if the search spfaceis of dimension/ + 1 and
the test space 8V, .1 = AA*U; 1 then the corresponding Petrov—Galerkin condition becomes

AA*ii 4 — Opafip 1 LAA U4,

where§,+1 is a harmonic Ritz value oA A*. Furthermore, ifU;,; and W,,, are bases that span the
subspace#(.; and W4, respectively, then the harmonic Ritz values/oA* are the eigenvalues of
matrix Hy1:

~ -1
Hi1= (W111U1+1) W;:—lAA* U1 (11)

It should be clear now how to compute the shifts for the implicit restart. At each restart we compute
the harmonic Ritz values and use as shifts phiargest ones. It is worth noting that we are actually
using an “exact shift” strategy with harmonic rather than ordinary Ritz values. As we show next, the
harmonic Ritz values can be easily obtained at the cost of an additional step of the LBD and the SVD of
the corresponding lower bidiagonal matrix.

Proposition 3. The harmonic Ritz values and vectorsy of matrix AA* with respect to the subspace
W, .1 correspond to the eigenvalue problem

Bj.1Biiay =0y, y=DBJ, (12)
whereB; 1 is the(! + 2) x (I + 1) lower bidiagonal matrix of the LBD of lengihy+ 1.

Proof. Using relations (4), (5) we have
AA*Upy1 = Up12Bi1 By,

whereBHl isthe(l +2) x (I+1) lower bidiagonal matrix that corresponds to the LBD of lengthl and
B,+1 is derived by deleting the last row & ;. If we define the matrix;,; = B,+1B ., then, according
to [45], the harmonic Ritz values are eigenvalues of the generalized elgenvalue problem

T Th 7 = 07545, (13

whereT),, is obtained by deleting the last row &f,,. However, substituting;., and7, in (13) we
have

B 1B}, 1Bii1 B\ 1§ = 0Bi11 B/, 7.
Assuming thatB,H is nonsingular and setting= Bz+1y we have that
B 1Bii1y = 6y. O

Therefore, the harmonic Ritz values sought in this section are equal to the eigenvalues of the matrix
B} 1B;11 and can be computed directly from the singular values ofithe2) by (I + 1) lower bidiagonal
matrix B,, ;. Note that an additional step of LBD is required in order to comBjie.

Observe that in “pure” LBD nothing new is achieved by invoking the harmonic Ritz values instead of
the standard Ritz values technique. However, this is not the case for implicitly restarted LBD. As shown
by Morgan in [35, Theorem 5.14] the subspace generated by implicitly restarted Arnoldi on a éatrix
using the unwanted harmonic Ritz values as shifts is
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Spal’{r, Gr, Gzr, G3r, o, G Vi, Y2, ..., yk},

where they;’s are the harmonic Ritz vectors corresponding to the desired harmonic Ritz values, whereas
when using the unwanted Ritz values as shifts, §ilie are the Ritz vectors corresponding to the
desired Ritz values. Note that the two subspaces are distinct because of the different set of approximate
eigenvectors in the added portion; hence the convergence behavior of implicitly restarted LBD will not
necessarily be the same for the two cases. In Section 8.1 we provide numerical evidence illustrating the
superior behavior of harmonic Ritz values vis-a-vis ordinary Ritz values.

5. Deflation

One important issue in the design of implicitly restarted Arnoldi algorithms is the implementation
of efficient deflation techniques that enhance convergence and stability and provide an effective way
to compute multiple and clustered eigenvalues. This is so as to let the methods become an effective
alternative to block methods. It is worth noting that implicitly restarted Arnoldi has been combined
with block methods to deal with the computation of few selected eigenpairs and singular triplets in an
algorithm recently proposed by Baglama et al. [1]. We thus need to consider how to implement deflation
in the context of implicitly restarted LBD. Our scheme builds upon results presented in [2,33,46]. As in
[33] we employ “locking”, that decouples converged approximate singular values and singular subspaces.
In this section we describe the modification and application of the “orthogonal deflating transformation”
(ODT for short), a scheme originally proposed by Sorensen in [46] in the context of implicitly restarted
Arnoldi for eigenvalues. We show that the transformation can be applied directly on the bidiagonal matrix
that results from implicitly restarted LBD. The deflation scheme enables the stable and efficient locking
of approximate singular values that have converged with relative accuracies that may be much inferior to
the machine precision.

The ODT is based upon a special unitary matrix, gaythat is built, as shown in [46] to satisfy
Qey = y for a suitably chosen unit norm vecter= [, ..., n,]*; cf. [2,46] for the construction 0.
FurthermoreQ has the form

Q=R+ yej, with Re; =0,
whereR is upper triangular, its first column is zero aRély = 0. It may also be written as
Q=L+yg", withLe;=0, L*y=¢;—g,
whereL is lower triangular ang™ = e + nie’{R. Assuming now that such@ can be built, the following
lemma shows how to apply the ODT in the case of implicitly restarted LBD.

Lemma 4. Let (9, y., yr) be an approximate singular triplet o € C"** computed from the lower
bidiagonal matrixB resulting afterk steps of LBD. Let als®@; = Q;(y;) € C*TVx*+D gand 0, =
Qr(yg) € C**k pe the unitary matrices produced for ODT from the vectgrsand yr, respectively.
Then the updated matrig = Q; B Qg is lower bidiagonal and has the special forbn= (g %) where6

is the approximate singular value arlis also lower bidiagonal.

Proof. Using the same notation as above, the following relations hol@far
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Orei=yr, (14)

QL =Ry +yLe], Rpe1 =0, RiyL =0, (15)

Qr=Lr+yrgr, Lpe; =0, Liyp=e1—gr. (16)
Similarly, the following relations also hold fap x:

Ore1 =Yg, (17)

Qr = Rg + yrei, Rre; =0, Rryr =0, (18)

Qr=Lg+ YrEx Lge1 =0, LRYyr =e1— gr. (19)

We will prove thatB = Q7 BQy is upper Hessenberg as well as lower triangular, and therefore lower
bidiagonal. In particular,

B=Q;BQxr=0Q;B(Rg+yre;) = Q; BRg + O} (Byr)e;
= Q;BRR + Q’EGyLe’l‘ = Q;BRR +0€1€T,
sinceQ; y. = e1. Therefore,

B=Q;BQOr= (L} +8.y;)BRr +0e1¢; = L; BRg + g1.(y; B)Rx + 0e1e}
= LzBRR + QgL(y;RR) + 0616? = LzBRR + GeleI,
sinceyy Rg = 0; cf. relations (18). Matrix.; BRy + Oeie] is upper Hessenberg becausgand R are
upper triangular ana@ is lower bidiagonal, thu® is upper Hessenberg. Furthermore,

B=Q;BQr=Q;B(Lr+yrgr) = Q} BLr + Q; (Byr)gk
=Q7BLr+0Q7yL8r = Q1 BLg +0e1g%,
since Q] y. = e1 because of (14). Therefore,

B= (R, +yLe))*BLg +0e1gh = (R} +e1y;)BLg + 0e1gl
=R;BLr+ei(y; B)Lg +0e18p = Ry BLg +0e1yzLr +0e1gy
=R;BLg+0e1(ygxLr + gx) = R; BLg + 0ezeq,
sinceyyLg + g = e; because of (19). Since bo#tj and L are lower triangularp would be lower

bidiagonal while the rank-one update would not modify the lower triangular form, thergfisealso
lower triangular. O

It is worth noting that the observations concerning the numerical stability of ODT discussed in [46]
carry over to the present case. In particular, note that matiizesQr are built fromy; and yg,
respectively, therefore, some of their implicit properties are not exactly satisfied in finite precision
arithmetic. Therefore, in order foB = Q3 BQr to be numerically upper Hessenberg, special care
must be taken so thdltg; (y; B)Rrll> would remain small in practice. If we writg; B = 6y} + z*,
wherez denotes numerical error, then it follows thgt; (y; B)Rgll2 = %LIIZ*RRHz, whereni denotes

the first component ofy;. Unfortunately, for small values off the 1above factor could be large
and a rescaling strategy, such as the one described in [46], must be applied. On the other hand,
R;BLg + 6ei1(y; BLg + 6g%) = R; BLg 4 Oe1e] + e1z*Lg. Since Lr = Qr — yrgk, if we apply

the aforementioned rescaling strategy, the ndign|. = niR is kept small and thereforé would be

. . . . 1
numerically lower triangular since1z*Lg||2 Will be small for smallz.
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6. Refined singular vector approximations

It is often the case when computing eigenvalues that a Ritz vector may exhibit poor convergence even
though the corresponding Ritz value has converged. Jia proposed in [24] a refined Ritz vector strategy.
The key is to approximate the eigenvector by means of a refined Ritz vector designed to minimize the
norm of the residual over the subspace involved. In Section 2 we saw that the LBD decompositions are
equivalent to Lanczos decompositions on either* or the augmented matrik (with a starting vector
of special structure). Therefore, we can compute the refined residual (and vector) using @ithed*.

We first outline the refinement process for matéix Given 6 the approximation to the smallest
singular value ofA, we seek the refined singular vectors= U; 15 € K1 1(AA*, u1) andv = Vit €
IC/(A*A, v1) that solve the joint minimization problefn:

. 0 A ~ U1+1S
secml,?ecl [(A* 0) _Jlm+n]( Vit ) 2
IILss¢]ll2=
. 0 A‘/l ~ Ul+l 0 N
=  min _
seC rec! |:(A*U1+1 0 ) “ ( 0 Vv t),
[ILs;£]l2=1
0 B
= min (U”l 0 > [( B} 01) —6(12”1)} <s>
seCl+1, ! 0 V 1 0 t
Tsninct " a1ery 0 2
0 B,
. 1
— min B* O _ 5_ 21+1 N
seCl+L reC! l* 0 t
lis:e1=1 ap1ef, 0 2
= Umin(R21+2),
where
0 By Iy
RM:( B; 0)—&( O+>, (20)
ey O

since the norm of the residual is minimized whigh ¢#*]* is the right singular vector associated with
the smallest singular valuenin(R242). This singular value is called the refined residual. In general,
it is known that the angle between the refined Ritz vector and the exact eigenvector is better than the
corresponding angle between the latter and the standard Ritz vector. Furthermore, notice that we can ust
the Rayleigh quotienp = i#*Av in an attempt to obtain an improved eigenvalue, singeay be more
accurate tha@; cf. [48, Section 4.3].

Concerning matrixAA*, decompaosition (7) suggests thatif;, is the current approximation to the
smallest singular value of, the refined residual and refined singular vector can be retrieved as before,
that is by computing the smallest singular value and right singular vector of

2

_ B[Bl* + O(1+l€[+1€;<+1 =2 7 2

Bi1= : &2l (21)
ﬂ1+2011+1€1+1

2 We thank a referee for suggesting this presentation of the refined residual.
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We next have to decide which refined residual to compute, the oneArétrnor from C? Since (21)
involves the tridiagonal matri® B* one might expect stability problems in contrast to (20). Furthermore,
the refined residual fod A* yields approximations only to the left singular vector so that to obtain
approximations to the right singular vector we would need to use the relagigr- c%minA*umm or also
work with the refined residual od*A. It is thus preferable to use the augmented matriwhich also
facilitates the concurrent approximation of both the left and right singular vectetskedr more details,
see also the discussion in [48, Section 4.3].

7. 1 RLANB: Implicitly restarted har monic L anczos bidiagonalization

Based on the previous discussion, we next display our proposed method as Algorithm 3. Parameter
[ =k + p is the maximum dimension of the bidiagonalization, wherés the number of implicitly
shifted QR steps applied aB,. Parameteei gnumdetermines the number of smallest singular values
that we seek antlol controls the convergence tolerance. The first stelpRIfANB constructs an LBD
factorization of lengthi. For this purpose we have used the functi@nbpr o from Larsen’sPROPACK
[28] (see also [29]) which is a set ®IATLAB codes for the Hermitian eigenvalue and SVD problems
based on Lanczos and Lanczos bidiagonalization with partial reorthogonalization. It has been observed
experimentally that implicit restarting still works when the Lanczos vectors are semi-orthogonal [31, pp.
19-20]. As described in Section 4, if we select to shift with Ritz values, we prefer, for reasons of stability,
to compute singular values & rather than eigenvalues 8§ B;". If, instead, we select to shift by means
of harmonic Ritz values, we could use the singular valueB, of.

Algorithm 3 (I RLANB). An implicitly restarted Lanczos bidiagonalization method to compute a few of
the smallest singular triplets of large sparse matrices.

Input matrix A € C™*"  k, p, ei gnumt ol . Starting vectowu;. Setl =k + p
Output ei gnumof the smallest singular triplets

1. Compute basel;; andV; and bidiagonalB,; usingLBD

2. Repeat

3.if (shifts == Rit2 then

4. Compute the singular values, i =1, ...,/ of E

5. dsaf (shifts == Harmonig

6. ComputeB, 1 by an additional step of LBD and
the singular values;, i =1, ...,/ +10of B;;;

7. end

8. Performp implicit QR steps using bulgechasing #pwith the p largest
o? as shifts and update the LBD factorizationV," = U, B

9. Compute the approximatiaimin(A) = min{o;}

10. Compute the refined residuabf min(A)

11.if ||| <t ol xnor mest (A) then

12. Compute the left and right refined singular vectors g

13. ComputeQ; and Q matrices using ODT and perform deflation



50168-9274(03)00194-6/FLA AID:1538 Vol.eee(eee) P.14 (1-23)
ELSGMLTM(APNUM) :m2 v 1.182 Prn:15/01/2004; 13:13 anm1538 by:ELE p. 14

14 E. Kokiopoulou et al. / Applied Numerical Mathematsa® (eeee) ecee—see

14. Discard the first column df;, 4, V; and the first row and column d,

15. k =k — 1 andei gnum=ei gnum-1

16.end

17. Reorthogonalize,jﬂ andv;” against all previous (even converged) basis vectors
18. ExtendAV," = U’ B{ to length/ = k + p usingLBD

19. Until convergencef all ei gnumsingular values

The next step is to compute the 2-norm of the refined residual according to either one of the strategies
described in Section 6. If this norm is smaller thaml scaled by an estimatiomér nest ( A) ) of
IlA]l, then the approximation to the singular value has converged. In practice, wenserasst ( A)
the largest singular value &; before the first restart dfRLANB. On the other hand, if convergence has
not taken place we proceed to the reorthogonalization steps (line 17) and repeat the process. As soon a
the current approximation ten,, satisfies the convergence criterion we compute the corresponding left
and right refined singular vectors and proceed with the deflation procedure. We compute the orthogonal
matricesQ; and Q using ODT, as described in Section 5. Purging is accomplished by discarding the
first column of the bases,, ; andV," as well as the first row and column Bf". As a result, we obtain
an LBD factorization of lengthi(k — 1) while the deflated factorization no longer contains the targeted
singular values. However, in subsequent restarts we reorthogonalize the updated u@qtmsd v
against all previous vectors, even purged ones, since roundoff may introduce components towards the
directions of converged vectors. Note that since we are computing a small number of singular triplets, the
extra cost incurred is low. Computational practice indicates that this limited reorthogonalization suffices
to maintain an acceptable level of orthogonality among basis vectors that may have been degraded by the
implicit restart.

8. Numerical experiments

In this section we present numerical experiments designed to illustrate the numerical and computa-
tional performance df RLANB. All codes were written ilVATLAB 6. 1 and ran on a 866 MHz Pentium
Il equipped with 1 GB of RAM and 512 Kb of cache memory runniigndows 2000 Server.We
also illustrate the performance bRLANB vs. two recent methods for whidllATLAB codes are pub-
licly available and which are matrix-free, so as to permit the solution of very large sparse problems in
computational environments such as the above. These methods were:

| RBLSVDS- | RBLEI GS. Code due to Baglama, Calvetti, and Reichel and based on implicitly restarted
block Lanczos [1] designed to compute one or more eigenvalues and/or singularivalues.

JDQZ: Code based on Jacobi—Davidson QZ method due to Fokkema, Sleijpen and van der Vorst and
implemented ifVATLAB [14].4

Note that if asked to compute a few of the smallest singular values of sparse matridéaTthaB 6
built-in functionsvds, that is based on a compiled implementatiolABPACK (ei gs), applies shift-

3 At http://hypatia.math.uri.edu/~jbaglama.
4 At http://ww.math.ruu.nl/people/sleijpen/JD\_software/JDQZ.html.
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and-invert and requires an LU decomposition of the augmented ntatibherefore, we do not include

svds in our experiments. It is also worth noting that in [LRBLSVDS- | RBLEI GSwas compared to
methods selected based on criteria similar to the ones described herein. We note that in all the experiment:
that follow we employed the pufdATLAB version of PROPACK in which nonex files are used.

8.1. Ritz and harmonic Ritz shift strategies

The first set of experiments is designed to illustrate the convergence behavior of Ritz values vis-a-
vis that of harmonic Ritz values, when used as shifts in the implicitly restarted LBD algorithm. We
constructed a sequence of diagonal matriteg R"*",n =100 s =1, 2,..., that exhibit increasing
clustering of their smallest singular values NATLAB notation:

As =spdi ags([1:10"(-s):1+9%10"(-s),2:1:1007,0,100, 100). (22)

The test space dimension was= k + p = 20 while at each restart we performed= 10 implicit

QR steps. We used a random starting vector normalized to have unit length and convergence tolerance
t ol = 1e—8. Fig. 1 illustrates the true relative errors for Ritz as well as for harmonic Ritz shifts. It is
evident that as the clustering of the smallest singular valuég afcreases, harmonic Ritz values either
converge significantly faster (they require fewer restarts) or, with the same backward error (2-norm of
residual) used for the Ritz values, produce results with better forward relative error. Therefore, in case
of severe clustering of the smallest singular values we use harmonic Ritz values, which, as shown in
Section 4.2, can be computed at relatively small cost.

8.2. Experiments with ill-conditioned matrices

We next investigate the behavior IoRLANB with harmonic Ritz values and ill-conditioned matrices.
We constructed a sequence of dense matriges R"*", n = 100,s =4,...,7 and 9...,12 with
increasing condition numbers:

Hs =spdi ags(l i nspace(1,10"s,100),0,100, 100),
As =ort h(rand(100))«Hs xort h(rand(100))".

We used the same starting vector and parameters as in the previous exatnglé0,(p = 10),
except for the convergence tolerance which was sétdio = 1e—12. Fig. 2 illustrates the absolute
value of the relative error achieved byRLANB. For the cases = 4,5, 6,7, | RLANB computed the
smallest singular value with relative error smaller than®0For even higher values of the condition
number § =9, 10, 11, 12), convergence clearly deteriorates. In particular, for the most difficult case of
k(A) = 10712, the relative error is approximately(D), in agreement with the predicted forward error
bound. On the other hand, when we used a smaller convergence tolerance, spetificaty10-14,
I RLANB converged with three correct decimal digits (absolute relative error approximafely1@-4).

We next include a numerical example illustrating the behavior of the refined residual as opposed to
the Ritz one. We used matriX | ¢1850 of dimension 1850« 712 andk (A) = 1.4 x 10° from Matrix
Market? with parameterg + p = 50, p = 30 andt ol = 1e—8. The right diagram in Fig. 3 shows the

5 At http://math.nist.gov/MatrixMarket.
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Fig. 1. Experiments with the diagonal matrices (22). Starting from the left top corner and moving clockwise we depict relative
errors fors =1, 2, 3, 4. Convergence tolerance was set ti = 1e—8. Solid lines correspond to standard Ritz shifts, dashed
lines to harmonic Ritz shifts.
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Fig. 2. Experiments with the increasingly ill-conditioned matrices (23), with condition numiydis= 10°, s =4, 5, 6, 7 (left)
andx (A) =10°,5s =9,10,11, 12 (right).



50168-9274(03)00194-6/FLA AID:1538 Vol.eee(eee) P.17 (1-23)
ELSGMLTM(APNUM) :m2 v 1.182 Prn:15/01/2004; 13:13 anm1538 by:ELE p. 17

E. Kokiopoulou et al. / Applied Numerical Mathematsa® (eeee) ecoe—eee 17

b 5 I VPV iy e IRVl
107N vl'/l_[\.l'/”.\_"\j\,'m' W g
\ PIREN l\!' ) I .\»\1, |

Relative error

Residual

— Refined residual
ofL_— Ritz residual

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Number of restarts Number of restarts

Fig. 3. Experiments witth RLANB for matrixi | | ¢1850.

relative error; the left diagram shows residual estimates provided by the refined as well as by the Ritz
residuals. Observe thaRLANB converged with relative accuracy(@8) and that the refined residuals
provided an accurate gauge of convergence, in contrast to the Ritz residuals, that failed to detect it.

8.3. Computing few singular values

We next illustrate the ability df RLANB to quickly detect a few additional singular values that lie near
the smallest, once the latter has converged. We continue LUEIhNB with harmonic Ritz values.

We first experiment with matrigr car of dimensionN = 1000 [19] included ilVATLAB's function
gal | ery. Our target is to compute its 10 smallest singular values. The length of LBD wast p =
40 while we usedp = 10 implicit shifts per step. Fig. 4 illustrates the norms of the residual for each
iteration. The dashed lines represent the convergence criterion that was set equatest (A) xt ol ,
where nor mest (A) is an estimation of the norm ofd which we approximate byjA|, ~ || B2
(computed before the first restart). We conducted two experiments. In the first case (top of Fig. 4) we
used convergence tolerance equakt td = le—6 while in the second case we usedl = 1e-10.

The plots on the right of Fig. 4 are detailed versions of the plots on the left. We immediately notice
thatl RLANB can continue computing singular values at subsequent restarts. This behavior is even more
pronounced when we employ a stricter convergence tolerance £ 1e—10). Notice that after the
smallest singular value has been approximated (at restart number 98), then in the subsequent 9 restart
each of the remaining singular values is approximated. Observe that the ratio among the largest and
smallest singular values computed‘ij§v’—9 = 1.0027. Obviously, deflation has helped to deal effectively

with this level of clustering.

We next experiment with matridgw_2048 from Matrix Market, the 10 smallest singular values of
which are not as clustered as in the previous céggi (= 219). We usedk + / =50, p = 20 and
experimented with convergence tolerantes = 1e—8 andt ol = 1e—12. Fig. 5 illustrates the results.

As in the experiment witlgr car we observe thdt RLANB rapidly approximates the remaining singular
values once convergence for the smallest one has been achieved. Because of the decreased clustering
the smallest singular values, however, convergence is not as fast as in the previous case.
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Fig. 5. Experiments with RLANB on dw_2048. Left: Convergence tolerandeol = 1e—8. Right: Convergence tolerance
tol =1le-12.
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Fig. 6. Experiments witth RLANB for matrixwest 0479.

We next show an example with highly clustered singular values and high conditidn £ O(10'))
that causes problems forRLANB. This is matrixwest 0479 from Matrix Market and parameters
k+ p=40p=10,t ol =1e-12 andmaxit = 1500. Fig. 6 illustrates the disappointing performance
of the method, which fails to locate the minimum singular value within a reasonable number of restarts.

8.4. Comparisons with related methods

In this section we provide numerical experiments that illustrate the behavidRloANB vis-a-vis the
methods selected above, nameRBLEI GS- | RLBSVDS andJDQZ. In both algorithms, the singular
values are obtained via the augmented madtixr he first two examples are with two matrices, nhamely
j pwh_991 (991x 991, nnz = 6027) andmel | 1850 (1850x 712, nnz = 8755), both obtained
from Matrix Market. We used the algorithms under consideration to compute one as well as two of the
smallest singular triplets. The convergence tolerance was set te= 1e—6. The minimum search space
dimension k for | RLANB, j i n for JDQZ, andBLSZ for | RBLEI GS- | RBLSVDS) was set to 3. The
maximum search space dimensions used were detgs =) max = NBLS x BLSZ = 15; cf. the help
pages ofl RBLEI GS- | RBLSVDS and JD(QZ for detailed explanation regarding the input parameters.
Tables 1 and 2 illustrate the corresponding number of restarts and matrix vector products, and indicates
that | RLANB competes well with modern available methods. Note that the number of matrix vector
products is multiplied by two fof RBLEI GS- | RBLSVDS andJDQZ, since the matrix vector product
using the augmented matn, is equivalent to one matrix vector with and one withA*.

Our last experiment originates from the computation of pseudospectra of large matrices. Since the
e-pseudospectrum of a matrix can be defined as the locus of pooftthe complex plane that satisfy
the inequalityonmin(zI — A) < €, it becomes of critical importance to use fast algorithms to estimate the
smallest singular value (see [49] for a comprehensive survey). We experiment with a family of matrices,
studied in [51], that originate from specific bidiagonal ones to which we add random sparse entries. In
MATLAB notation, the matrices are defined as

A=spdi ags([3xexp(—(0:N—-1)/10),0.5x0nes(N,1)],0:1,N,N)...
+0.1xsprandn(N,N, 10/N), (23)
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Table 1

Number of restarts (IT), matrix vector products (MV) and runtimes (in sec) for miafrivh_991 in order to compute one or
two of the smallest singular triplets

j pwh_991 | RLANB | RBLEI GS- | RBLSVDS JDQZ
# min. triplets IT MV sec IT MV sec IT MV sec
1 22 580 36 210 6300 18.25 294 3532 35
2 82 2080 116 445 13350 38.25 336 4036 a
Table 2

Number of restarts (IT), matrix vector products (MV) and runtimes (in sec) for magix _1850 in order to compute one or
two of the smallest singular triplets

wel | _1850 | RLANB | RBLEI GS- | RBLSVDS JDQZ

# min. triplets IT MV sec IT MV sec IT MV sec
1 106 2680 21.86 230 6900 39.09 FAI LED
2 118 2980 25.66 268 8040 47.22 FAI LED

Table 3

Number of restarts (IT), matrix vector products (MV), runtimes (in sec) and approximatiang;pfor the family of random
matrices (23). The star £) indicates that the method ran out of memory (1 GByte)

z=35
N x 10% | RLANB | RBLEI GS- | RBLSVDS JDQZ
Omin IT MV sec Omin IT MV sec Omin IT MV sec
5 0.3725 1 91 47 0.3725 5 300 78 0.3725 23 306 273
10 0.3740 1 91 102 0.3740 7 420 210 0.3740 23 306 436
15 0.3726 1 91 150 0.3726 7 420 331 * * * *
20 0.3718 1 91 203 0.3718 8 480 505 * * * *
z=1
N x 104 | RLANB | RBLEI GS- | RBLSVDS JDQZ
Omin IT (MV) sec Omin IT (MV) sec Omin IT (MV) sec
5 1.04e-4 7(271) 218 1D4e-4 19 (1140) 294 Ble-1 264 (3194) 3740
10 523e-4 6 (241) 500 P3e-4 19 (1140) 601 Ble-1 148 (1802) 4080
15 00014 6 (241) 741 ©014 23(1380) 1141 * ok *
20 884e-6 7(271) 1138 B4e-6 19 (1140) 1270 * ok *

where N is the size of the matrix. Specifically, we seekin(A — zI) for valuesz = 1 andz = 3.5,

and dimension®N = 50000: 50000: 200000. The parameters foRLANB andJDQZ were: Minimum
dimension of search spake=j m n = 15 and maximum dimension of search spkcep =] max =

30. Convergence tolerance was set l = 1e—10. The corresponding parameters FdRBLEI GS-

| RBLSVDS wereBLSZ =3, NBLS = 10 andt ol = 1le—6. The maximum number of restarts was
set toMAXI T = 1000. Table 3 illustrates the number of restarts and matrix vector products, as well as
convergence results. We observe that for the ghif3.5, all three methods return similar results (up
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to 4 digits); however| RLANB requires significantly fewer matrix—vector products. Furthermore, when
N = 150000 200000 we observe thatDQZ ran out of memory for both shifts. Finally, we note that the
6min cOmputed byl DQZ for the shiftz = 1 is entirely different than the results of the other two methods
that are in agreement in 9 to 10 digits.

Selecting the parameteksand p for the implicit restarts does not follow any specific rule, but rather
depends upon the computational resources at our disposal. Our experience indicates that, inkgeneral,
should be at least twice the number of the singular values sougptisifclose tok then the iteration
tends to be more “aggressive”, in the sense that it may require fewer restarts to converge to the smallest
singular value, but may pose problems if we seek several singular values.

9. Conclusions

In this paper we described the designl ®]LANB, an implicitly restarted Lanczos bidiagonalization
algorithm for the computation of a few of the smallest singular values of a matrix. We investigated
Ritz as well as harmonic Ritz values as shifts in the implicit QR steps and demonstrated the superiority
of the latter in the case of clustered smallest singular values. We showed how to efficiently compute
the harmonic Ritz values, only at a very small additional cost compared to Ritz values. Furthermore,
we demonstrated thadtRLANB with harmonic Ritz values can successfully compute the smallest
singular value of matrices with very large condition numbers. We proved that the orthogonal deflation
transformation can be applied directly on Lanczos bidiagonalization. Numerical experiments demonstrate
that this deflation scheme can efficiently compute clustered singular values. Finally, we demonstrated the
application of refined residuals and vectors in the case of Lanczos bidiagonalization. The computation
of the smallest singular values is a difficult and computationally challenging problem. We believe
that the above framework will prove to be very helpful in future investigations as well as in practical
computations.
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