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Abstract

A matrix-free algorithm,IRLANB, for the efficient computation of the smallest singular triplets of large
possibly sparse matrices is described. Key characteristics of the approach are its use of Lanczos bidiagon
implicit restarting, and harmonic Ritz values. The algorithm also uses a deflation strategy that can be
directly on Lanczos bidiagonalization. A refinement postprocessing phase is applied to the converged
vectors. The computational costs of the above techniques are kept small as they make direct use of the b
form obtained in the course of the Lanczos factorization. Several numerical experiments with the met
presented that illustrate its effectiveness and indicate that it performs well compared to existing codes.
 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Consider the singular value decomposition (SVD)A = UΣV ∗ of a matrixA ∈ C
m×n, whereU ∈

C
m×m,V ∈ C

n×n and, without loss of generality,n � m. Denote its singular triplets by(σi, ui, vi), i =
1, . . . ,min(n,m) ≡ m, whereσ1 � σ2 � · · · � σr > σr+1 = · · · = σm = 0. In this paper we are intereste
in computing few of the smallest singular triplets of a general large sparse matrix. This problem
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in several important applications including total least squares [6], information retrieval [9], image and
signal processing [50], control [13] and matrix pseudospectra [49].
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The computation of few extremal singular triplets of large sparse matrices has been the focus
research efforts, see [3,4,11,16,29,32,42,45,47] as well as [2,12,17,23,41,48] and numerous re
therein. Recent needs in applications such as the ones mentioned earlier, however, have m
research oriented towards the development of algorithms for the computation of the smallest s
triplets, a problem that is acknowledged to challenge the capabilities of current state-of-the-art so
e.g., see [1,8,14,18,20,21,34].

It is common practice to approximate singular values by computing the eigenvalues of
Hermitian eigenproblems. Furthermore, since computing the smallest eigenvalues of a m
equivalent to computing the largest eigenvalues of its inverse, significant work has been done on
and-invert” techniques. For example, this approach was adopted in theMATLAB (version 6)svds
routine, that is based onARPACK [32]; the latter, implements one of the most successful theore
frameworks for the effective implicitly restarted Arnoldi technique, based on seminal work of Sore
Lehoucq and collaborators. However, as the size of the matrices increases, this approach bec
expensive in terms of storage and computational costs, as it requires the factorization of and
with large sparse, possibly indefinite matrices. Developments that attempt to remedy this p
concern inexact inverse iteration and inexact inverse Lanczos methods (see, for example, [27]
Section 11.2]). An alternative approach that avoids such solves and is frequently effective is base
use of harmonic Ritz values [38,45].

In this paper we propose and investigate an algorithm, we callIRLANB, that is based on Lanczo
bidiagonalization (LBD), a method for computing singular values originally due to Golub and K
[15]. This is a matrix-free method for the computation of the singular triplets, thus the only oper
with A are matrix vector multiplications with it and its Hermitian adjointA∗. We enhance the LBD
algorithm with state-of-the-art technology for the effective computation of few small singular tripl
large and possibly sparse matrices. These improvements are described in the paper, whose stru
follows. In Section 2 we review Lanczos bidiagonalization and describe its limitations when dep
to compute the smallest singular triplets. In Section 3 we show how to incorporate implicit re
introduced in [47], that permit Lanczos bidiagonalization to maintain limited storage and computa
requirements per restart. In Section 4 we study the use of Ritz and harmonic Ritz values as
shifts. In Section 5 we show how to apply the orthogonal deflation transformation proposed in
the context of Lanczos bidiagonalization to also make it more effective when the singular valu
clustered. In Section 6 we show how to use refinement, originally proposed for eigenvectors in
enhance the computation of singular triplets. In Section 7, we describe the overall structure ofIRLANB.
Finally, in Section 8 we describe numerical experiments that illustrate the behavior ofIRLANB in various
cases and compare its performance with related methods.

Implicit restarting in the context of LBD was first studied by Björck et al. in [5] and later La
combined it with partial reorthogonalization in [28,31]. After submitting the first version of this pape
became aware of a contribution conducted independently by Jia and Niu [25] which proposes im
restarted LBD using “refined shifts” [25], in order to compute a few largest or smallest singular v
An important difference betweenIRLANB and the above approaches is the use of harmonic Ritz v
in order to effectively approximate the smallest singular values of the matrix. Furthermore, inIRLANB
we have adopted a philosophy that acknowledges the inherent difficulties of the problem and atte
address them by combining state-of-the-art techniques, such as deflation and use of refined resi
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1.1. Definitions and equivalent Hermitian eigenproblems
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The following well-known connections (see, e.g., [17, Section 8.6]) between the SVD and the
decompositions of the following Hermitian matrices

A∗A, AA∗ and C =
(

0 A

A∗ 0

)
∈ C

(m+n)×(m+n),

are fundamental to our discussion:

V ∗(A∗A
)
V = diag

(
σ 2

1 , . . . , σ
2
m,0, . . . ,0︸ ︷︷ ︸

n−m

)
, (1)

U ∗(AA∗)U = diag
(
σ 2

1 , . . . , σ
2
m

)
. (2)

PartitioningV asV = [V1, V2], whereV1 consists ofm columns and setting

Y = 1√
2

[−U 0 U

V1

√
2V2 V1

]
,

then,Y is an orthonormal eigenbasis for the augmented matrixC and

Y ∗CY = diag
(
−σ1, . . . ,−σm,0, . . . ,0︸ ︷︷ ︸

n−m

,σ1, . . . , σm

)
. (3)

The above equivalences provide a convenient framework when seeking few singular values
matrices because they permit the computation of singular triplets using Hermitian eigensolve
black box. The problem has been studied in the literature and there exist several software p
for its solution (see, e.g., [28,32,52]), and software based on the Jacobi–Davidson method (e.g.,
and Section 8). Nevertheless, when seeking few small singular triplets, as we do in this paper,
complications arise that must be addressed [40,45].

In particular, since we are interested in the smallest singular values ofA, equivalent targets are th
smallest eigenvalues of eitherAA∗ or A∗A, or interior eigenvalues ofC (in the latter two, excluding
spurious zeroes). Observe that, while squaring the singular values ofA will induce an increase of th
separation of the largest ones, it will also cause a corresponding clustering of the smallest ones;
cause problems for Hermitian eigensolvers [39, Section 11.7]. Furthermore, ifA is ill-conditioned, and
we denote byκ(A) its condition number with respect to the 2-norm, the squaring of the condition nu
κ(A∗A) = κ(AA∗) = κ(A)2, is likely to cause significant loss of accuracy for small singular values.
that for rectangular matrices the above analysis holds if we refer instead to the “effective con
‖A‖2‖A†‖2, whereA† denotes the pseudoinverse ofA (see [7, p. 28]). If, on the basis of relation (3
we select instead to recover the singular triplets ofA from the eigenvalues of the augmented ma
C, we have to approximate interior eigenvalues. Unfortunately, such a computation also challen
performance of Hermitian eigensolvers, e.g., their convergence behavior becomes irregular (see,
Section 5]). Furthermore, since each singular value corresponds to an eigenvalue pair,±σi, Hermitian
eigensolvers tend to take twice the number of iterations. An additional difficulty stems from the inc
length (m + n) of the basis vectors and corresponding increase in the storage requirements, from
approximations to the singular values are drawn.
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2. Lanczos bidiagonalization
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We next describe Lanczos bidiagonalization (LBD) that holds a central role in our frame
LBD was originally proposed by Golub and Kahan (cf. [15] and [17, Section 9.3.3]) as a proce
transforming a matrixA ∈ C

m×n to upper bidiagonal form,B ∈ R
m×n. In line with the bidiagonalization

algorithms presented elsewhere in the literature, we will consider a version of the process that tra
A to lower bidiagonal form (first discussed in [37]). In fact, our discussion owes a lot to the wo
Larsen in [29]. Afterk <m (successful) steps, LBD produces two blocks of Lanczos vectors

Uk+1 = [u1, u2, . . . , uk+1] ∈ C
m×(k+1), Vk = [v1, v2, . . . , vk] ∈ C

n×k,

whose columns are orthonormal bases for the Krylov subspacesKk+1(AA∗, u1), Kk(A
∗A,v1), respec-

tively (where, as usual, for any square matrixG ∈ C
n×n, Km(G, r) ≡ span{r,Gr, . . . ,Gm−1r}) and satisfy

the following relations:

AVk = Uk+1Bk, (4)

A∗Uk+1 = VkB
∗
k + αk+1vk+1e

∗
k+1, (5)

where the matrixBk ∈ R
(k+1)×k has real elements and is lower bidiagonal:

Bk =


α1

β2 α2

β3
. . .

. . . αk

βk+1

 . (6)

The outline of LBD is provided in Algorithm 1.

Algorithm 1 (Lanczos bidiagonalization) (cf. [2,15,29]). The real scalarsαi, βi are the diagonal an
subdiagonal elements respectively, of the bidiagonal matrixBk .

Input: A ∈ C
m×n, starting vectorp0 ∈ C

m and scalark
Output: Bidiagonal matrixBk ∈ R

(k+1)×k and orthogonal bases
Uk+1 ∈ C

m×(k+1), Vk ∈ C
n×k

1. Setβ1 = ‖p0‖2, u1 = p0/β1 andv0 = 0
2. for i = 1,2, . . . , k
3. ri = A∗ui − βivi−1

4. αi = ‖ri‖2

5. vi = ri/αi

6. pi = Avi − αiui

7. βi+1 = ‖pi‖2

8. ui+1 = pi/βi+1

9. end

Following the execution of LBD, the singular values ofBk could be used as approximations to t
singular values ofA. If we premultiply both sides of (5) withA and use (4) we obtain
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AA∗Uk+1 = (AVk)B
∗
k + αk+1Avk+1e

∗
k+1 = Uk+1BkB

∗
k + αk+1Avk+1e

∗
k+1. (7)
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However, from the LBD algorithm (cf. lines 6–8 of Algorithm 1) we can also write

AA∗Uk+1 = Uk+1BkB
∗
k + αk+1(αk+1uk+1 + βk+2uk+2)e

∗
k+1

= Uk+1(BkB
∗
k + α2

k+1ek+1e
∗
k+1)+ αk+1βk+2uk+2e

∗
k+1. (8)

Matrix BkB
∗
k + α2

k+1ek+1e
∗
k+1 is real symmetric and tridiagonal, therefore, in exact arithmetic, rela

(8) is a symmetric Lanczos factorization and hence LBD is equivalent to symmetric Lanczos itera
AA∗.

It is also known that there is an equivalence between LBD applied onA and Lanczos applied on th
augmented matrixC [17, Section 9.3.2]. In particular, consider the starting vector

q1 =
(
u∗

1,0, . . . ,0︸ ︷︷ ︸
n

)∗
, ‖u1‖2 = 1.

After 2k steps of Lanczos with starting vectorq1 the following relation holds:

CQ2k = Q2kT2k + βk+1q2k+1e
∗
2k = Q2kT2k + βk+1

(
uk+1

0

)
e∗

2k, (9)

whereq2j−1 = (u∗
j ,0)∗ andq2j = (0, v∗

j )
∗, j = 1, . . . ,2k and

T2k =


0 α1

α1 0 β2

β2 0
. . .

. . .
. . . αk

αk 0

 .

After an odd-even permutation of rows and columns of (9), we obtain a Lanczos factorizatio
contains both LBD factorizations (4) and (5):(

0 A

A∗ 0

)(
Uk+1 0

0 Vk

)
=
(
Uk+1 0

0 Vk

)(
0 Bk

B∗
k 0

)
+
(

0 0
αk+1vk+1e

∗
k+1 0

)
. (10)

We next discuss some of the difficulties of the LBD algorithm. An important difficulty with LB
typical of Lanczos type algorithms, is the loss of orthogonality among the basis vectors inVk andUk+1

[36]. The application of reorthogonalization schemes can remedy the problem, though this is at a
computational cost. A compromise is to use partial reorthogonalization schemes that dynamically
the level of orthogonality among the basis vectors at each step. Recent work of Larsen has p
MATLAB codes that implement partial reorthogonalization in the context of LBD; see [28–31] a
as [43,44]. When the matrix at hand is very large, in order to obtain acceptable approximations
smallest singular triplets, even using sophisticated schemes for partial reorthogonalization, conv
can be slow and the basesUk+1, Vk need to become so large that computational and storage costs b
overwhelming.

As we show in the next sections, to address these problems, we incorporate implicit res
mechanisms in LBD that maintain computational and memory requirements constant at eac
Furthermore, we combine implicit restarting with harmonic Ritz values for the approximation o
smallest singular triplets.



ARTICLE IN PRESS
S0168-9274(03)00194-6/FLA AID:1538 Vol.•••(•••) P.6 (1-23)
ELSGMLTM(APNUM):m2 v 1.182 Prn:15/01/2004; 13:13 anm1538 by:ELE p. 6

6 E. Kokiopoulou et al. / Applied Numerical Mathematics••• (••••) •••–•••

3. Implicitly restarted LBD
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Implicit restarting, proposed by Sorensen in [47] for the Arnoldi and Lanczos iterations, throu
practical implementation inARPACK [32], is widely acknowledged to be one of the most succes
frameworks for solving very large eigenproblems. In this section we describe how to apply im
restarting in the context of LBD. Implicit restarting in LBD was first studied in [5] and was later comb
with partial reorthogonalization in [28,31].

In Section 2 we established that LBD is equivalent to Lanczos applied onAA∗, according to
factorization (7). Therefore, afterl = k + p steps of LBD we can applyp implicitly shifted QR steps on
matrix Tl = BlB

∗
l , which is real symmetric and tridiagonal. Alternatively, we can apply Golub–Ka

SVD steps [17, Section 8.6.2] directly on the bidiagonal matrixBl in order to enhance stability [39]. Th
implicitly shifted QR step is applied directly on an upper bidiagonal matrix by means of bulgech
as shown in Algorithm 2. The first Givens rotation (line 4) creates a “bulge” (i.e., a nonzero elem
the subdiagonal) and the trailing Givens rotations “chase” the bulge out of the matrix in order to
its upper bidiagonal form. Since we work with a lower bidiagonal matrix, the update can be writ
B+

l = QLBlQ
∗
R, whereQL ∈ R

(l+1)×(l+1) andQR ∈ R
l×l are orthogonal matrices that implement Give

rotations. Therefore, by updating the basesVl andUl+1 we can recover the bidiagonalization

AV +
k = U+

k+1B
+
k ,

whereV +
k = VlQR(1 : k, :)∗ andU+

k+1 = Ul+1QL(1 : k + 1, :)∗. This updated LBD factorization is wha
we would have obtained afterk steps of LBD with the special starting vector

u+
1 = (

AA∗ − µ2I
)
u1,

using shiftµ.

Algorithm 2 (Bulgechasing) Golub–Kahan SVD step[17, Section 8.6.2].

Input: Tridiagonal matrixTl = BlB
∗
l , implicit shift µ

Output: Updated upper bidiagonal matrixB+
l

1. Sety = t1,1 −µ andz = t1,2
2. for i = 1 : l − 1
3. Determinec = cos(θ) ands = sin(θ) such that

(y, z)
( c s

−s c

)= (∗,0)

4. Apply toBl the Givens rotation from the right:Bl = BlG(i, i + 1, θ)
5. Set:y = bi,i andz = bi+1,i

6. Determinec = cos(θ) ands = sin(θ) such that( c s
−s c

)�(y
z

)= (∗
0

)
7. Apply toBl the Givens rotation from the leftBl = G(i, i + 1, θ)�Bl

8. if i < l − 1 then
9. Set:y = bi,i+1 andz = bi,i+2

10. end
11.end
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If the previous procedure is repeated forp − 1 shifts, sayµ2,µ3, . . . ,µp, we obtain a bidiagonalization
that corresponds to the starting vector

nt to

matrix
arted
r

n that

n

that

D

eral
u+
1 =

p∏
i=1

(
AA∗ −µ2

i I
)
u1,

and therefore we can apply polynomial filtering with implicit restarts of LBD as an equivale
implicitly restarted Lanczos onAA∗.

We also showed in relation (10) that LBD is equivalent to Lanczos applied on the augmented
C. It is thus natural to ask whether implicitly restarted LBD can be equivalent to implicitly rest
Lanczos onC. If the implicit restarting mechanism is applied directly onC, the updated starting vecto
q+

1 =∏p

i=1(C − µiI )q1 will not have, in general, the special structureq+
1 = [u+

1 ;0] and therefore it will
not be possible to extract an LBD decomposition from it. This is shown in the following propositio
is stated assuming exact arithmetic.

Proposition 1. It is not possible, in general, to apply implicit QR steps on the Lanczos factorizatio(9)
of the augmented matrixC, and obtain a Lanczos factorization that can be computed by LBD.

Proof. Implicit restarts essentially perform polynomial filtering on the starting vectoru1. Afterp implicit
QR steps on factorization (9), the updated Lanczos factorization can be written as

CQ+
2k = Q+

2kT
+
2k + β+

k+1q
+
2k+1e

∗
2k,

with starting vectorq+
1 = π(C)q1 whereπ(C) is a non-trivial polynomial of the augmented matrixC of

degreep. Observe now that the powers ofC have the following special structure

C2i =
[
(AA∗)i 0

0 (A∗A)i

]
, C2i+1 =

[
0 A(A∗A)i

A∗(AA∗)i 0

]
, i = 1,2, . . . .

If we define the polynomialsπo andπe containing strictly odd and even powers respectively such
π(C) = πo(C) + πe(C), then for the polynomialπ(C) it holds that

π(C) =
[

πo(AA∗) Aπe(A
∗A)

A∗πe(AA∗) πo(A
∗A)

]
.

Since for the starting vector it holds thatq∗
1 = [u∗

1,0], we have that

q+
1 =

[
πo(AA∗)u1

A∗πe(AA∗)u1

]
.

Observe now that according to (2) it holds that

πe(AA∗) = Uπe(Λ)U ∗, Λ = diag
(
σ 2

1 , . . . , σ
2
m

)
,

and thus‖A∗πe(AA∗)u1‖2 = ‖A∗Uπe(Λ)U ∗u1‖2 = ‖VΣ∗πe(Λ)U ∗u1‖2, where we have used the SV
of A. SinceV is orthonormal, if we denote byΣ1 = diag[σ1, . . . , σm], it follows that∥∥A∗πe

(
AA∗)u1

∥∥
2 = ∥∥Σ∗πe(Λ)U ∗u1

∥∥
2 = ∥∥[Σ1 0]∗πe

(
Σ2

1

)
U ∗u1‖2.

Notice thatU ∗u1 cannot be zero sinceU is orthonormal and has full rank. Furthermore, for a gen
matrix with m distinct nonzero singular values, the above norm would be zero only ifπe(σ

2
i ) = 0 for
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i = 1, . . . ,m. Since the degree ofπe is p < m, however, this can only happen ifπe is identically
zero. Therefore, in general, the updated vectorq+ cannot have the special structureq+ = [u+;0],
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1 1 1
thus the updated Lanczos factorization on the augmented matrixC cannot be equivalent to an LB
factorization. ✷

4. Shift selection strategies

We next consider shift selection for the implicitly restarted LBD. In particular, we examine
strategies: (i) exact Ritz values and (ii) exact harmonic Ritz values. Alternative shift strategies i
the zeros of Chebyshev polynomials and Leja points (see, e.g., [10] and references therein).

4.1. Ritz values

Using relation (5) and premultiplying withU ∗
l we see that afterl = k +p steps of LBD, the following

relationship holds:

U ∗
l AA∗Ul+1 = U ∗

l AVlBl + αl+1U
∗
l Avl+1e

∗
l+1.

Applying relation (4) and considering only the firstl columns of each side it follows thatU ∗
l AA∗Ul =

B̂lB̂
∗
l , whereB̂l ∈ R

l×l denotes the square lower subdiagonal matrix that we obtain by omitting th
row of Bl. Therefore, the squares of the singular values of the matrixB̂l are Ritz values of the Hermitia
matrix AA∗ and therefore provide approximations to the singular values ofA. Our exact Ritz values
strategy is to pick as implicit shifts the largestp of the squared singular values of̂Bl . It is worth noting
that since our target is to compute singular values ofB̂l and not eigenvalues of̂BlB̂

∗
l , we do not expec

loss of precision due to squared conditioning. Furthermore, by not approximating squared singula
we do not aggravate any existing clustering of the smallest singular values ofA.

4.2. LBD and harmonic Ritz values

Ritz values readily provide a straightforward shift strategy. It is often the case, however, th
smallest singular values ofA are clustered. This is a situation that can significantly slow down
convergence of implicitly restarted Lanczos. In order to secure satisfactory convergence rates
try to approximate the smallest singular values ofA by computing the largest Ritz values of(AA∗)−1.
In the remainder of this section we will be assuming thatA has full rank. In line with the matrix-free
approach aspired to in this paper, however, we wish to avoid explicit computations with(AA∗)−1. This
becomes possible using the concept of harmonic Ritz values [38]:

Definition 2. A value θ̃k ∈ C is a harmonic Ritz value of a matrixG ∈ C
m×m with respect to some linea

subspaceWk if θ̃−1
k is a Ritz value ofG−1 with respect toWk .

Returning to the Lanczos factorization (7), since we are interested in the Ritz values of(AA∗)−1

we could compute harmonic Ritz values ofAA∗. We do this by means of oblique projection and
corresponding Petrov–Galerkin condition. Our presentation in the remainder of this section owes
the discussion of Sleijpen and van der Vorst in [45] regarding harmonic Ritz values (the reader c
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refer to [21] for a relevant discussion). In particular, if the search spaceUl+1 is of dimensionl + 1 and
the test space isWl+1 = AA∗Ul+1 then the corresponding Petrov–Galerkin condition becomes

e
f

mpute
lly

xt, the
SVD of

e

matrix

ad of
shown
trix
AA∗ũl+1 − θ̃l+1ũl+1⊥AA∗Ul+1,

where θ̃l+1 is a harmonic Ritz value ofAA∗. Furthermore, ifUl+1 andWl+1 are bases that span th
subspacesUl+1 andWl+1, respectively, then the harmonic Ritz values ofAA∗ are the eigenvalues o
matrix H̃l+1:

H̃l+1 = (
W ∗

l+1Ul+1
)−1

W ∗
l+1AA∗Ul+1. (11)

It should be clear now how to compute the shifts for the implicit restart. At each restart we co
the harmonic Ritz values and use as shifts thep largest ones. It is worth noting that we are actua
using an “exact shift” strategy with harmonic rather than ordinary Ritz values. As we show ne
harmonic Ritz values can be easily obtained at the cost of an additional step of the LBD and the
the corresponding lower bidiagonal matrix.

Proposition 3. The harmonic Ritz values̃θ and vectorsỹ of matrix AA∗ with respect to the subspac
Wl+1 correspond to the eigenvalue problem

B∗
l+1Bl+1y = θ̃y, y = B̂∗

l+1ỹ, (12)

whereBl+1 is the(l + 2) × (l + 1) lower bidiagonal matrix of the LBD of lengthl + 1.

Proof. Using relations (4), (5) we have

AA∗Ul+1 = Ul+2Bl+1B̂
∗
l+1,

whereBl+1 is the(l+2)×(l+1) lower bidiagonal matrix that corresponds to the LBD of lengthl+1 and
B̂l+1 is derived by deleting the last row ofBl+1. If we define the matrixTl+1 = Bl+1B̂

∗
l+1 then, according

to [45], the harmonic Ritz values are eigenvalues of the generalized eigenvalue problem

T ∗
l+1Tl+1ỹ = θ̃ T̂ ∗

l+1ỹ, (13)

whereT̂l+1 is obtained by deleting the last row ofTl+1. However, substitutingTl+1 andT̂l+1 in (13) we
have

B̂l+1B
∗
l+1Bl+1B̂

∗
l+1ỹ = θ̃ B̂l+1B̂

∗
l+1ỹ.

Assuming that̂Bl+1 is nonsingular and settingy = B̂∗
l+1ỹ we have that

B∗
l+1Bl+1y = θ̃y. ✷

Therefore, the harmonic Ritz values sought in this section are equal to the eigenvalues of the
B∗

l+1Bl+1 and can be computed directly from the singular values of the(l+2) by (l+1) lower bidiagonal
matrixBl+1. Note that an additional step of LBD is required in order to computeBl+1.

Observe that in “pure” LBD nothing new is achieved by invoking the harmonic Ritz values inste
the standard Ritz values technique. However, this is not the case for implicitly restarted LBD. As
by Morgan in [35, Theorem 5.14] the subspace generated by implicitly restarted Arnoldi on a maG

using the unwanted harmonic Ritz values as shifts is
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span
{
r,Gr,G2r,G3r, . . . ,Gl−k−1r, ỹ1, ỹ2, . . . , ỹk

}
,

hereas
he
roximate
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tation
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effective
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eflation
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spaces.
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tarted
matrix
ocking
ferior to

y

r

where theỹj ’s are the harmonic Ritz vectors corresponding to the desired harmonic Ritz values, w
when using the unwanted Ritz values as shifts, theỹj ’s are the Ritz vectors corresponding to t
desired Ritz values. Note that the two subspaces are distinct because of the different set of app
eigenvectors in the added portion; hence the convergence behavior of implicitly restarted LBD w
necessarily be the same for the two cases. In Section 8.1 we provide numerical evidence illustra
superior behavior of harmonic Ritz values vis-à-vis ordinary Ritz values.

5. Deflation

One important issue in the design of implicitly restarted Arnoldi algorithms is the implemen
of efficient deflation techniques that enhance convergence and stability and provide an effect
to compute multiple and clustered eigenvalues. This is so as to let the methods become an
alternative to block methods. It is worth noting that implicitly restarted Arnoldi has been com
with block methods to deal with the computation of few selected eigenpairs and singular triplet
algorithm recently proposed by Baglama et al. [1]. We thus need to consider how to implement d
in the context of implicitly restarted LBD. Our scheme builds upon results presented in [2,33,46]
[33] we employ “locking”, that decouples converged approximate singular values and singular sub
In this section we describe the modification and application of the “orthogonal deflating transform
(ODT for short), a scheme originally proposed by Sorensen in [46] in the context of implicitly res
Arnoldi for eigenvalues. We show that the transformation can be applied directly on the bidiagonal
that results from implicitly restarted LBD. The deflation scheme enables the stable and efficient l
of approximate singular values that have converged with relative accuracies that may be much in
the machine precision.

The ODT is based upon a special unitary matrix, sayQ, that is built, as shown in [46] to satisf
Qe1 = y for a suitably chosen unit norm vectory = [η1, . . . , ηn]∗; cf. [2,46] for the construction ofQ.
Furthermore,Q has the form

Q = R + ye∗
1, with Re1 = 0,

whereR is upper triangular, its first column is zero andR∗y = 0. It may also be written as

Q = L+ yg∗, with Le1 = 0, L∗y = e1 − g,

whereL is lower triangular andg∗ = e∗
1 + 1

η1
e∗

1R. Assuming now that such aQ can be built, the following
lemma shows how to apply the ODT in the case of implicitly restarted LBD.

Lemma 4. Let (θ, yL, yR) be an approximate singular triplet ofA ∈ C
m×n computed from the lowe

bidiagonal matrixB resulting afterk steps of LBD. Let alsoQL = QL(yL) ∈ C
(k+1)×(k+1) and QR =

QR(yR) ∈ C
k×k be the unitary matrices produced for ODT from the vectorsyL and yR , respectively.

Then the updated matrix̆B = Q∗
LBQR is lower bidiagonal and has the special form̆B = (

θ 0
0 B̂

)
whereθ

is the approximate singular value and̂B is also lower bidiagonal.

Proof. Using the same notation as above, the following relations hold forQL:
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QLe1 = yL, (14)
∗ ∗

ower

n [46]

cision
are

e
r hand,
QL = RL + yLe1, RLe1 = 0, RLyL = 0, (15)

QL = LL + yLg
∗
L, LLe1 = 0, L∗

LyL = e1 − gL. (16)

Similarly, the following relations also hold forQR :

QRe1 = yR, (17)

QR = RR + yRe
∗
1, RRe1 = 0, R∗

RyR = 0, (18)

QR = LR + yRg
∗
R, LRe1 = 0, L∗

RyR = e1 − gR. (19)

We will prove thatB̆ = Q∗
LBQR is upper Hessenberg as well as lower triangular, and therefore l

bidiagonal. In particular,

B̆ = Q∗
LBQR = Q∗

LB
(
RR + yRe

∗
1

)= Q∗
LBRR + Q∗

L(ByR)e
∗
1

= Q∗
LBRR +Q∗

LθyLe
∗
1 = Q∗

LBRR + θe1e
∗
1,

sinceQ∗
LyL = e1. Therefore,

B̆ = Q∗
LBQR = (

L∗
L + gLy

∗
L

)
BRR + θe1e

∗
1 = L∗

LBRR + gL

(
y∗
LB
)
RR + θe1e

∗
1

= L∗
LBRR + θgL

(
y∗
RRR

)+ θe1e
∗
1 = L∗

LBRR + θe1e
∗
1,

sincey∗
RRR = 0; cf. relations (18). MatrixL∗

LBRR + θe1e
∗
1 is upper Hessenberg becauseL∗

L andRR are
upper triangular andB is lower bidiagonal, thus̆B is upper Hessenberg. Furthermore,

B̆ = Q∗
LBQR = Q∗

LB
(
LR + yRg

∗
R

)= Q∗
LBLR + Q∗

L(ByR)g
∗
R

= Q∗
LBLR + θQ∗

LyLg
∗
R = Q∗

LBLR + θe1g
∗
R,

sinceQ∗
LyL = e1 because of (14). Therefore,

B̆ = (RL + yLe
∗
1)

∗BLR + θe1g
∗
R = (R∗

L + e1y
∗
L)BLR + θe1g

∗
R

= R∗
LBLR + e1(y

∗
LB)LR + θe1g

∗
R = R∗

LBLR + θe1y
∗
RLR + θe1g

∗
R

= R∗
LBLR + θe1(y

∗
RLR + g∗

R) = R∗
LBLR + θe1e

∗
1,

sincey∗
RLR + g∗

R = e∗
1 because of (19). Since bothR∗

L andLR are lower triangular,B would be lower
bidiagonal while the rank-one update would not modify the lower triangular form, thereforeB̆ is also
lower triangular. ✷

It is worth noting that the observations concerning the numerical stability of ODT discussed i
carry over to the present case. In particular, note that matricesQL,QR are built from yL and yR ,
respectively, therefore, some of their implicit properties are not exactly satisfied in finite pre
arithmetic. Therefore, in order for̆B = Q∗

LBQR to be numerically upper Hessenberg, special c
must be taken so that‖gL(y

∗
LB)RR‖2 would remain small in practice. If we writey∗

LB = θy∗
R + z∗,

wherez denotes numerical error, then it follows that‖gL(y
∗
LB)RR‖2 = 1

ηL
1
‖z∗RR‖2, whereηL

1 denotes

the first component ofyL. Unfortunately, for small values ofηL
1 the above factor could be larg

and a rescaling strategy, such as the one described in [46], must be applied. On the othe
R∗

LBLR + θe1(y
∗
LBLR + θg∗

R) = R∗
LBLR + θe1e

∗
1 + e1z

∗LR. SinceLR = QR − yRg
∗
R , if we apply

the aforementioned rescaling strategy, the norm‖gR‖2 = 1
ηR

1
is kept small and thereforĕB would be

numerically lower triangular since‖e1z
∗LR‖2 will be small for smallz.
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6. Refined singular vector approximations

ce even
trategy.
ize the
ons are
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ith
ral,

han the
can use

e
efore,
It is often the case when computing eigenvalues that a Ritz vector may exhibit poor convergen
though the corresponding Ritz value has converged. Jia proposed in [24] a refined Ritz vector s
The key is to approximate the eigenvector by means of a refined Ritz vector designed to minim
norm of the residual over the subspace involved. In Section 2 we saw that the LBD decompositi
equivalent to Lanczos decompositions on eitherAA∗ or the augmented matrixC (with a starting vector
of special structure). Therefore, we can compute the refined residual (and vector) using eitherC or AA∗.

We first outline the refinement process for matrixC. Given σ̃ the approximation to the smalle
singular value ofA, we seek the refined singular vectorsũ = Ul+1s ∈ Kl+1(AA∗, u1) and ṽ = Vlt ∈
Kl (A

∗A,v1) that solve the joint minimization problem:2

min
s∈C

l+1,t∈C
l

‖[s;t ]‖2=1

∥∥∥∥[( 0 A

A∗ 0

)
− σ̃ Im+n

](
Ul+1s

Vlt

)∥∥∥∥
2

= min
s∈C

l+1,t∈C
l

‖[s;t ]‖2=1

∥∥∥∥[( 0 AVl

A∗Ul+1 0

)
− σ̃

(
Ul+1 0

0 Vl

)](
s

t

)∥∥∥∥
2

= min
s∈C

l+1,t∈C
l

‖[s;t ]‖2=1

∥∥∥∥∥
(
Ul+1 0

0 Vl+1

)[( 0 Bl

B∗
l 0

αl+1e
∗
l+1 0

)
− σ̃

(
I2l+1

0

)](
s

t

)∥∥∥∥∥
2

= min
s∈C

l+1,t∈C
l

‖[s;t ]‖2=1

∥∥∥∥∥
[( 0 Bl

B∗
l 0

αl+1e
∗
l+1 0

)
− σ̃

(
I2l+1

0

)](
s

t

)∥∥∥∥∥
2

= σmin(R2l+2),

where

R2l+2 =
( 0 Bl

B∗
l 0

αl+1e
∗
l+1 0

)
− σ̃

(
I2l+1

0

)
, (20)

since the norm of the residual is minimized when[s∗ t∗]∗ is the right singular vector associated w
the smallest singular valueσmin(R2l+2). This singular value is called the refined residual. In gene
it is known that the angle between the refined Ritz vector and the exact eigenvector is better t
corresponding angle between the latter and the standard Ritz vector. Furthermore, notice that we
the Rayleigh quotientρ = ũ∗Aṽ in an attempt to obtain an improved eigenvalue, sinceρ may be more
accurate thañσ ; cf. [48, Section 4.3].

Concerning matrixAA∗, decomposition (7) suggests that ifσ̃min is the current approximation to th
smallest singular value ofA, the refined residual and refined singular vector can be retrieved as b
that is by computing the smallest singular value and right singular vector of

Bl+1 =
(
BlB

∗
l + α2

l+1el+1e
∗
l+1

βl+2αl+1e
∗
l+1

)
− σ̃ 2

minĨ . (21)

2 We thank a referee for suggesting this presentation of the refined residual.
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We next have to decide which refined residual to compute, the one fromAA∗ or from C? Since (21)
involves the tridiagonal matrixBB∗ one might expect stability problems in contrast to (20). Furthermore,

tain

,

rameter

ues

ms
bserved
1, pp.

ability,
ns

w of
the refined residual forAA∗ yields approximations only to the left singular vector so that to ob
approximations to the right singular vector we would need to use the relationvmin = 1

σ̃ min
A∗umin or also

work with the refined residual ofA∗A. It is thus preferable to use the augmented matrixC which also
facilitates the concurrent approximation of both the left and right singular vectors ofA. For more details
see also the discussion in [48, Section 4.3].

7. IRLANB: Implicitly restarted harmonic Lanczos bidiagonalization

Based on the previous discussion, we next display our proposed method as Algorithm 3. Pa
l = k + p is the maximum dimension of the bidiagonalization, wherep is the number of implicitly
shifted QR steps applied onBl . Parametereignum determines the number of smallest singular val
that we seek andtol controls the convergence tolerance. The first step ofIRLANB constructs an LBD
factorization of lengthl. For this purpose we have used the functionlanbpro from Larsen’sPROPACK
[28] (see also [29]) which is a set ofMATLAB codes for the Hermitian eigenvalue and SVD proble
based on Lanczos and Lanczos bidiagonalization with partial reorthogonalization. It has been o
experimentally that implicit restarting still works when the Lanczos vectors are semi-orthogonal [3
19–20]. As described in Section 4, if we select to shift with Ritz values, we prefer, for reasons of st
to compute singular values ofBl rather than eigenvalues ofBlB

∗
l . If, instead, we select to shift by mea

of harmonic Ritz values, we could use the singular values ofBl+1.

Algorithm 3 (IRLANB). An implicitly restarted Lanczos bidiagonalization method to compute a fe
the smallest singular triplets of large sparse matrices.

Input: matrixA ∈ C
m×n, k, p, eignum, tol. Starting vectoru1. Setl = k + p

Output: eignum of the smallest singular triplets

1. Compute basesUl+1 andVl and bidiagonalBl usingLBD
2. Repeat
3. if (shifts == Ritz) then
4. Compute the singular valuesσi, i = 1, . . . , l of B̂l

5. elseif (shifts == Harmonic)
6. ComputeBl+1 by an additional step of LBD and

the singular valuesσi, i = 1, . . . , l + 1 of Bl+1

7. end
8. Performp implicit QR steps using bulgechasing onBl with thep largest

σ 2
i as shifts and update the LBD factorization:AV +

k = U+
k+1B

+
k

9. Compute the approximatioñσmin(A) = min{σi}
10. Compute the refined residualr of σ̃min(A)

11. if ‖r‖ � tol ∗ normest(A) then
12. Compute the left and right refined singular vectors ofσ̃min

13. ComputeQL andQR matrices using ODT and perform deflation
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14. Discard the first column ofUl+1, Vl and the first row and column ofBl

15. k = k − 1 andeignum = eignum−1
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-
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rst and
16.end
17. Reorthogonalizeu+

k+1 andv+
k against all previous (even converged) basis vectors

18. ExtendAV +
k = U+

k+1B
+
k to lengthl = k + p usingLBD

19.Until convergenceof all eignum singular values

The next step is to compute the 2-norm of the refined residual according to either one of the st
described in Section 6. If this norm is smaller thantol scaled by an estimation (normest(A)) of
‖A‖, then the approximation to the singular value has converged. In practice, we use asnormest(A)
the largest singular value ofBl before the first restart ofIRLANB. On the other hand, if convergence h
not taken place we proceed to the reorthogonalization steps (line 17) and repeat the process. A
the current approximation toσmin satisfies the convergence criterion we compute the correspondin
and right refined singular vectors and proceed with the deflation procedure. We compute the ort
matricesQL andQR using ODT, as described in Section 5. Purging is accomplished by discardin
first column of the basesU+

k+1 andV +
k as well as the first row and column ofB+

k . As a result, we obtain
an LBD factorization of length(k − 1) while the deflated factorization no longer contains the targ
singular values. However, in subsequent restarts we reorthogonalize the updated vectorsu+

k+1 andv+
k

against all previous vectors, even purged ones, since roundoff may introduce components tow
directions of converged vectors. Note that since we are computing a small number of singular trip
extra cost incurred is low. Computational practice indicates that this limited reorthogonalization s
to maintain an acceptable level of orthogonality among basis vectors that may have been degrade
implicit restart.

8. Numerical experiments

In this section we present numerical experiments designed to illustrate the numerical and co
tional performance ofIRLANB. All codes were written inMATLAB 6.1 and ran on a 866 MHz Pentium
III equipped with 1 GB of RAM and 512 Kb of cache memory runningWindows 2000 Server. We
also illustrate the performance ofIRLANB vs. two recent methods for whichMATLAB codes are pub
licly available and which are matrix-free, so as to permit the solution of very large sparse probl
computational environments such as the above. These methods were:

IRBLSVDS-IRBLEIGS: Code due to Baglama, Calvetti, and Reichel and based on implicitly rest
block Lanczos [1] designed to compute one or more eigenvalues and/or singular values.3

JDQZ: Code based on Jacobi–Davidson QZ method due to Fokkema, Sleijpen and van der Vo
implemented inMATLAB [14].4

Note that if asked to compute a few of the smallest singular values of sparse matrices, theMATLAB 6
built-in functionsvds, that is based on a compiled implementation ofARPACK (eigs), applies shift-

3 At http://hypatia.math.uri.edu/~jbaglama.
4 At http://www.math.ruu.nl/people/sleijpen/JD\_software/JDQZ.html.
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and-invert and requires an LU decomposition of the augmented matrixC. Therefore, we do not include
svds in our experiments. It is also worth noting that in [1],IRBLSVDS-IRBLEIGSwas compared to
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methods selected based on criteria similar to the ones described herein. We note that in all the exp
that follow we employed the pureMATLAB version ofPROPACK in which nomex files are used.

8.1. Ritz and harmonic Ritz shift strategies

The first set of experiments is designed to illustrate the convergence behavior of Ritz values
vis that of harmonic Ritz values, when used as shifts in the implicitly restarted LBD algorithm
constructed a sequence of diagonal matricesAs ∈ R

n×n, n = 100,s = 1,2, . . . , that exhibit increasing
clustering of their smallest singular values. InMATLAB notation:

As = spdiags([1 : 10∧(−s) : 1+ 9 ∗ 10∧(−s),2 : 1 : 100]′,0,100,100). (22)

The test space dimension wasl = k + p = 20 while at each restart we performedp = 10 implicit
QR steps. We used a random starting vector normalized to have unit length and convergence t
tol = 1e−8. Fig. 1 illustrates the true relative errors for Ritz as well as for harmonic Ritz shifts.
evident that as the clustering of the smallest singular values ofAs increases, harmonic Ritz values eith
converge significantly faster (they require fewer restarts) or, with the same backward error (2-n
residual) used for the Ritz values, produce results with better forward relative error. Therefore,
of severe clustering of the smallest singular values we use harmonic Ritz values, which, as sh
Section 4.2, can be computed at relatively small cost.

8.2. Experiments with ill-conditioned matrices

We next investigate the behavior ofIRLANB with harmonic Ritz values and ill-conditioned matrice
We constructed a sequence of dense matricesAs ∈ R

n×n, n = 100, s = 4, . . . ,7 and 9, . . . ,12 with
increasing condition numbers:

Hs = spdiags(linspace(1,10∧s,100)′,0,100,100),
As = orth(rand(100))∗ Hs ∗ orth(rand(100))′.

We used the same starting vector and parameters as in the previous examples (k = 20,p = 10),
except for the convergence tolerance which was set totol = 1e−12. Fig. 2 illustrates the absolu
value of the relative error achieved byIRLANB. For the casess = 4,5,6,7, IRLANB computed the
smallest singular value with relative error smaller than 10−10. For even higher values of the conditio
number (s = 9,10,11,12), convergence clearly deteriorates. In particular, for the most difficult ca
κ(A) = 10−12, the relative error is approximately O(1), in agreement with the predicted forward er
bound. On the other hand, when we used a smaller convergence tolerance, specificallytol = 10−14,
IRLANB converged with three correct decimal digits (absolute relative error approximately 0.5× 10−4).

We next include a numerical example illustrating the behavior of the refined residual as oppo
the Ritz one. We used matrixillc1850 of dimension 1850× 712 andκ(A) = 1.4 × 103 from Matrix
Market,5 with parametersk + p = 50,p = 30 andtol= 1e−8. The right diagram in Fig. 3 shows th

5 At http://math.nist.gov/MatrixMarket.
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relative
hed
Fig. 1. Experiments with the diagonal matrices (22). Starting from the left top corner and moving clockwise we depict
errors fors = 1,2,3,4. Convergence tolerance was set totol= 1e−8. Solid lines correspond to standard Ritz shifts, das
lines to harmonic Ritz shifts.

Fig. 2. Experiments with the increasingly ill-conditioned matrices (23), with condition numbersκ(A) = 10s , s = 4,5,6,7 (left)
andκ(A)= 10s , s = 9,10,11,12 (right).
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Fig. 3. Experiments withIRLANB for matrixillc1850.

relative error; the left diagram shows residual estimates provided by the refined as well as by t
residuals. Observe thatIRLANB converged with relative accuracy O(10−8) and that the refined residua
provided an accurate gauge of convergence, in contrast to the Ritz residuals, that failed to detec

8.3. Computing few singular values

We next illustrate the ability ofIRLANB to quickly detect a few additional singular values that lie n
the smallest, once the latter has converged. We continue usingIRLANB with harmonic Ritz values.

We first experiment with matrixgrcar of dimensionN = 1000 [19] included inMATLAB’s function
gallery. Our target is to compute its 10 smallest singular values. The length of LBD wasl = k + p =
40 while we usedp = 10 implicit shifts per step. Fig. 4 illustrates the norms of the residual for e
iteration. The dashed lines represent the convergence criterion that was set equal tonormest(A)×tol,
where normest(A) is an estimation of the norm ofA which we approximate by‖A‖2 ≈ ‖Bl‖2

(computed before the first restart). We conducted two experiments. In the first case (top of Fig
used convergence tolerance equal totol = 1e−6 while in the second case we usedtol = 1e−10.
The plots on the right of Fig. 4 are detailed versions of the plots on the left. We immediately
thatIRLANB can continue computing singular values at subsequent restarts. This behavior is eve
pronounced when we employ a stricter convergence tolerance (tol = 1e−10). Notice that after the
smallest singular value has been approximated (at restart number 98), then in the subsequent
each of the remaining singular values is approximated. Observe that the ratio among the larg
smallest singular values computed isσN−9

σN
= 1.0027. Obviously, deflation has helped to deal effectiv

with this level of clustering.
We next experiment with matrixdw_2048 from Matrix Market, the 10 smallest singular values

which are not as clustered as in the previous case (σN−9
σN

= 21.9). We usedk + l = 50,p = 20 and
experimented with convergence tolerancestol= 1e−8 andtol= 1e−12. Fig. 5 illustrates the result
As in the experiment withgrcarwe observe thatIRLANB rapidly approximates the remaining singu
values once convergence for the smallest one has been achieved. Because of the decreased clu
the smallest singular values, however, convergence is not as fast as in the previous case.
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e

e

Fig. 4. Experiments withIRLANB ongrcar(1000). Up: Convergence tolerancetol= 1e−6. Down: Convergence toleranc
tol= 1e−10.

Fig. 5. Experiments withIRLANB on dw_2048. Left: Convergence tolerancetol = 1e−8. Right: Convergence toleranc
tol= 1e−12.
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We next show an example with highly clustered singular values and high condition (κ(A) = O(1011))
that causes problems forIRLANB. This is matrixwest0479 from Matrix Market and parameter
k + p = 40,p = 10,tol= 1e−12 andmaxit= 1500. Fig. 6 illustrates the disappointing performan
of the method, which fails to locate the minimum singular value within a reasonable number of re

8.4. Comparisons with related methods

In this section we provide numerical experiments that illustrate the behavior ofIRLANB vis-a-vis the
methods selected above, namelyIRBLEIGS-IRLBSVDS andJDQZ. In both algorithms, the singula
values are obtained via the augmented matrixC. The first two examples are with two matrices, nam
jpwh_991 (991× 991, nnz = 6027) andwell_1850 (1850× 712, nnz = 8755), both obtained
from Matrix Market. We used the algorithms under consideration to compute one as well as two
smallest singular triplets. The convergence tolerance was set totol= 1e−6. The minimum search spac
dimension (k for IRLANB, jmin for JDQZ, andBLSZ for IRBLEIGS-IRBLSVDS) was set to 3. The
maximum search space dimensions used were set ask+ p= jmax= NBLS× BLSZ= 15; cf. the help
pages ofIRBLEIGS-IRBLSVDS andJDQZ for detailed explanation regarding the input paramet
Tables 1 and 2 illustrate the corresponding number of restarts and matrix vector products, and i
that IRLANB competes well with modern available methods. Note that the number of matrix v
products is multiplied by two forIRBLEIGS-IRBLSVDS andJDQZ, since the matrix vector produc
using the augmented matrixC, is equivalent to one matrix vector withA and one withA∗.

Our last experiment originates from the computation of pseudospectra of large matrices. Si
ε-pseudospectrum of a matrix can be defined as the locus of pointsz of the complex plane that satis
the inequalityσmin(zI − A) � ε, it becomes of critical importance to use fast algorithms to estimat
smallest singular value (see [49] for a comprehensive survey). We experiment with a family of ma
studied in [51], that originate from specific bidiagonal ones to which we add random sparse ent
MATLAB notation, the matrices are defined as

A= spdiags([3 ∗ exp(−(0 : N− 1)′/10),0.5 ∗ ones(N,1)],0 : 1,N,N) . . .
+0.1 ∗ sprandn(N,N,10/N), (23)
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Table 1
Number of restarts (IT), matrix vector products (MV) and runtimes (in sec) for matrixjpwh_991 in order to compute one or

r

273
436

as
ell as

up
two of the smallest singular triplets

jpwh_991 IRLANB IRBLEIGS-IRBLSVDS JDQZ

# min. triplets IT MV sec IT MV sec IT MV sec

1 22 580 3.6 210 6300 18.25 294 3532 35
2 82 2080 11.6 445 13350 38.25 336 4036 41.4

Table 2
Number of restarts (IT), matrix vector products (MV) and runtimes (in sec) for matrixwell_1850 in order to compute one o
two of the smallest singular triplets

well_1850 IRLANB IRBLEIGS-IRBLSVDS JDQZ

# min. triplets IT MV sec IT MV sec IT MV sec

1 106 2680 21.86 230 6900 39.09 FAILED
2 118 2980 25.66 268 8040 47.22 FAILED

Table 3
Number of restarts (IT), matrix vector products (MV), runtimes (in sec) and approximations ofσmin for the family of random
matrices (23). The star (“∗”) indicates that the method ran out of memory (1 GByte)

z = 3.5

N × 104 IRLANB IRBLEIGS-IRBLSVDS JDQZ

σ̂min IT MV sec σ̂min IT MV sec σ̂min IT MV sec

5 0.3725 1 91 47 0.3725 5 300 78 0.3725 23 306
10 0.3740 1 91 102 0.3740 7 420 210 0.3740 23 306
15 0.3726 1 91 150 0.3726 7 420 331 * * * *
20 0.3718 1 91 203 0.3718 8 480 505 * * * *

z = 1

N × 104 IRLANB IRBLEIGS-IRBLSVDS JDQZ

σ̂min IT (MV) sec σ̂min IT (MV) sec σ̂min IT (MV) sec

5 1.04e−4 7 (271) 218 1.04e−4 19 (1140) 294 1.84e−1 264 (3194) 3740
10 5.23e−4 6 (241) 500 5.23e−4 19 (1140) 601 1.91e−1 148 (1802) 4080
15 0.0014 6 (241) 741 0.0014 23 (1380) 1141 ∗ ∗∗ ∗
20 8.84e−6 7 (271) 1138 8.84e−6 19 (1140) 1270 ∗ ∗∗ ∗

whereN is the size of the matrix. Specifically, we seekσmin(A − zI ) for valuesz = 1 andz = 3.5,
and dimensionsN = 50000: 50000: 200000. The parameters forIRLANB andJDQZ were: Minimum
dimension of search spacek= jmin= 15 and maximum dimension of search spacek+ p= jmax=
30. Convergence tolerance was set totol = 1e−10. The corresponding parameters forIRBLEIGS-
IRBLSVDS wereBLSZ = 3, NBLS = 10 andtol = 1e−6. The maximum number of restarts w
set toMAXIT = 1000. Table 3 illustrates the number of restarts and matrix vector products, as w
convergence results. We observe that for the shiftz = 3.5, all three methods return similar results (
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to 4 digits); however,IRLANB requires significantly fewer matrix–vector products. Furthermore, when
N= 150000,200000 we observe thatJDQZ ran out of memory for both shifts. Finally, we note that the
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σ̂min computed byJDQZ for the shiftz = 1 is entirely different than the results of the other two meth
that are in agreement in 9 to 10 digits.

Selecting the parametersk andp for the implicit restarts does not follow any specific rule, but rat
depends upon the computational resources at our disposal. Our experience indicates that, in gk
should be at least twice the number of the singular values sought. Ifp is close tok then the iteration
tends to be more “aggressive”, in the sense that it may require fewer restarts to converge to the
singular value, but may pose problems if we seek several singular values.

9. Conclusions

In this paper we described the design ofIRLANB, an implicitly restarted Lanczos bidiagonalizati
algorithm for the computation of a few of the smallest singular values of a matrix. We invest
Ritz as well as harmonic Ritz values as shifts in the implicit QR steps and demonstrated the sup
of the latter in the case of clustered smallest singular values. We showed how to efficiently co
the harmonic Ritz values, only at a very small additional cost compared to Ritz values. Furthe
we demonstrated thatIRLANB with harmonic Ritz values can successfully compute the sma
singular value of matrices with very large condition numbers. We proved that the orthogonal de
transformation can be applied directly on Lanczos bidiagonalization. Numerical experiments demo
that this deflation scheme can efficiently compute clustered singular values. Finally, we demonstr
application of refined residuals and vectors in the case of Lanczos bidiagonalization. The comp
of the smallest singular values is a difficult and computationally challenging problem. We b
that the above framework will prove to be very helpful in future investigations as well as in pra
computations.
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